This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093971 #24 Feb 16 2025 08:32:53 %S A093971 0,1,2,7,16,40,86,195,404,873,1795,3727,7585,15537,31368,63582,127933, %T A093971 257746,517312,1038993,2081696,4173322,8355792,16731799,33484323, %U A093971 67014365,134069494,268234688,536562699,1073326281,2146849378,4294117419,8588623348,17178130162 %N A093971 Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A. %C A093971 In sumset notation, number of subsets A of {1,...,n} such that the intersection of A and 2A is nonempty. %C A093971 A variation of binary sum-full sets where parts can be re-used, this sequence counts subsets of {1..n} containing a part equal to the sum of two other (possibly equal) parts. The complement is counted by A007865. The non-binary version is A364914. For non-re-usable parts we have A088809. - _Gus Wiseman_, Aug 14 2023 %H A093971 Fausto A. C. Cariboni, <a href="/A093971/b093971.txt">Table of n, a(n) for n = 1..88</a> %H A093971 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sum-FreeSet.html">Sum-Free Set</a> %F A093971 a(n) = 2^n - A007865(n). %e A093971 The a(1) = 0 through a(5) = 16 subsets: %e A093971 . {1,2} {1,2} {1,2} {1,2} %e A093971 {1,2,3} {2,4} {2,4} %e A093971 {1,2,3} {1,2,3} %e A093971 {1,2,4} {1,2,4} %e A093971 {1,3,4} {1,2,5} %e A093971 {2,3,4} {1,3,4} %e A093971 {1,2,3,4} {1,4,5} %e A093971 {2,3,4} %e A093971 {2,3,5} %e A093971 {2,4,5} %e A093971 {1,2,3,4} %e A093971 {1,2,3,5} %e A093971 {1,2,4,5} %e A093971 {1,3,4,5} %e A093971 {2,3,4,5} %e A093971 {1,2,3,4,5} %t A093971 Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]!={}&]],{n,0,10}] (* _Gus Wiseman_, Aug 14 2023 *) %Y A093971 The complement is counted by A007865. %Y A093971 The version without re-usable parts is A088809 (differences A364756), complement A085489 (differences A364755). %Y A093971 The non-binary version is A364914, complement A326083. %Y A093971 The non-binary version w/o re-usable parts is A364534, complement A151897. %Y A093971 The version for partitions is A363225: %Y A093971 - ranks A364348, %Y A093971 - strict A363226, %Y A093971 - non-binary A364839, %Y A093971 - without re-usable parts A237113, %Y A093971 - non-binary without re-usable parts A237668. %Y A093971 The complement for partitions is A364345: %Y A093971 - ranks A364347, %Y A093971 - strict A364346, %Y A093971 - non-binary A364350, %Y A093971 - without re-usable parts A236912, %Y A093971 - non-binary without re-usable parts A237667. %Y A093971 Cf. A000079, A050291, A051026, A103580, A308546, A326080, A364349, A364461, A364533, A364670. %K A093971 nonn %O A093971 1,3 %A A093971 _T. D. Noe_, Apr 20 2004 %E A093971 Terms a(31) and beyond from _Fausto A. C. Cariboni_, Oct 01 2020