This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093995 #43 Nov 09 2024 01:12:19 %S A093995 1,4,4,9,9,9,16,16,16,16,25,25,25,25,25,36,36,36,36,36,36,49,49,49,49, %T A093995 49,49,49,64,64,64,64,64,64,64,64,81,81,81,81,81,81,81,81,81,100,100, %U A093995 100,100,100,100,100,100,100,100,121,121,121,121,121,121,121,121,121,121,121 %N A093995 n^2 appears n times, triangle read by rows. %C A093995 Row sums give A000578. %C A093995 Triangle sums give A000537. %H A093995 Reinhard Zumkeller, <a href="/A093995/b093995.txt">Rows n = 1..120 of triangle, flattened</a> %F A093995 T(n, k) = n^2, 1<=k<=n. %F A093995 a(n) = floor(sqrt(2*n - 1) + 1/2)^2. - _Ridouane Oudra_, Jun 18 2019 %F A093995 From _G. C. Greubel_, Dec 27 2021: (Start) %F A093995 T(n, n-k) = T(n, k). %F A093995 Sum_{k=1..floor(n/2)} T(n, k) = [n=1] + A265645(n+1). %F A093995 Sum_{k=1..floor(n/2)} T(n-k, k) = (1/48)*n*(n-1)*(7*(2*n-1) + 3*(-1)^n). %F A093995 T(2*n-1, n) = A016754(n). %F A093995 T(2*n, n) = A016742(n). (End) %e A093995 First few rows of the triangle are: %e A093995 1; %e A093995 4, 4; %e A093995 9, 9, 9; %e A093995 16, 16, 16, 16; %e A093995 25, 25, 25, 25, 25; %e A093995 36, 36, 36, 36, 36, 36; %e A093995 49, 49, 49, 49, 49, 49, 49; %e A093995 ... %p A093995 seq(seq(n^2, i=1..n), n=1..20); # _Ridouane Oudra_, Jun 18 2019 %t A093995 Flatten[Table[Table[n^2,{n}],{n,11}]] (* _Harvey P. Dale_, Feb 18 2011 *) %t A093995 Table[PadRight[{},n,n^2],{n,12}]//Flatten (* _Harvey P. Dale_, Jun 28 2023 *) %o A093995 (Haskell) %o A093995 a093995 n k = a093995_tabl !! (n-1) !! (k-1) %o A093995 a093995_row n = a093995_tabl !! (n-1) %o A093995 a093995_tabl = zipWith replicate [1..] $ tail a000290_list %o A093995 a093995_list = concat a093995_tabl %o A093995 -- _Reinhard Zumkeller_, Nov 11 2012, Mar 18 2011, Oct 17 2010 %o A093995 (Magma) [n^2: k in [1..n], n in [1..13]]; // _G. C. Greubel_, Dec 27 2021 %o A093995 (Sage) flatten([[n^2 for k in (1..n)] for n in (1..13)]) # _G. C. Greubel_, Dec 27 2021 %o A093995 (Python) %o A093995 from math import isqrt %o A093995 def A093995(n): return ((m:=isqrt(k:=n<<1))+(k>m*(m+1)))**2 # _Chai Wah Wu_, Nov 07 2024 %Y A093995 Cf. A000290, A000537, A000578, A016742, A016754, A127733, A199332, A265645. %K A093995 nonn,tabl %O A093995 1,2 %A A093995 _Reinhard Zumkeller_, May 24 2004 %E A093995 Edited by _N. J. A. Sloane_, Jul 03 2008 at the suggestion of _R. J. Mathar_ %E A093995 Definition clarified by _N. J. A. Sloane_, Nov 09 2024