This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093996 #44 Jan 05 2025 19:51:37 %S A093996 1,-1,-1,0,1,0,0,1,-1,0,0,1,-1,-1,1,0,0,0,1,-1,-1,0,1,1,-1,0,0,0,0,1, %T A093996 -1,-1,0,1,0,0,1,0,-1,-1,1,0,0,0,0,0,0,1,-1,-1,0,1,0,0,1,-1,0,0,1,-1, %U A093996 0,0,-1,0,1,1,-1,0,0,0,0,0,0,0,0,0,1,-1,-1,0,1,0,0,1,-1,0,0,1,-1,-1,1,0,0,0,1,-1,-1,1,0,0,-1,1,0,0,1 %N A093996 G.f.: Product_{k>=2} (1 - x^{F_k}) where F_k are the Fibonacci numbers. %C A093996 Number of partitions of n with an even number of distinct Fibonacci parts minus the number of partitions of n with an odd number of distinct Fibonacci parts. %C A093996 Every term is -1, 0 or 1. %H A093996 T. D. Noe, <a href="/A093996/b093996.txt">Table of n, a(n) for n = 0..1000</a> %H A093996 F. Ardila, <a href="http://arxiv.org/abs/math/0409418">The Coefficients of a Fibonacci power series</a>, arXiv:math/0409418 [math.CO], 2004. %H A093996 Neville Robbins, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/34-4/robbins.pdf">Fibonacci partitions</a>, The Fibonacci Quarterly, 34.4 (1996), pp. 306-313. %H A093996 Yufei Zhao, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/46_47-1/Zhao_12-08.pdf">The coefficients of a truncated Fibonacci power series</a>, Fib. Q., 46/47 (2008/2009), 53-55. %F A093996 Ardila gives a fast recurrence. %F A093996 a(n) = A093998(n) - A093997(n). %e A093996 G.f. = 1 - x - x^2 + x^4 + x^7 - x^8 + x^11 - x^12 - x^13 + x^14 + x^18 - x^19 - x^20 + x^22 + x^23 - x^24 + x^29 - x^30 - x^31 + x^33 + x^36 - x^38 - x^39 + x^40 + x^47 - ... - _N. J. A. Sloane_, May 30 2009 %t A093996 Take[ CoefficientList[ Expand[ Product[1 - x^Fibonacci[k], {k, 2, 13}]], x], 105] (* _Robert G. Wilson v_, May 29 2004 *) %t A093996 nn = 11; Take[CoefficientList[Expand[Product[1 - x^Fibonacci[n], {n, 2, nn}]], x], Fibonacci[nn+1]] (* _T. D. Noe_, Feb 27 2014 *) %o A093996 (Magma) R<x>:=PowerSeriesRing(Integers(), 115); Coefficients(R!( (&*[1-x^Fibonacci(j): j in [2..13]]) )); // _G. C. Greubel_, Dec 27 2021 %o A093996 (Sage) [( product( 1-x^fibonacci(j) for j in (2..14) ) ).series(x,n+1).list()[n] for n in (0..115)] # _G. C. Greubel_, Dec 27 2021 %Y A093996 Cf. A000045, A000119, A093997, A093998, A151661. %K A093996 easy,sign %O A093996 0,1 %A A093996 _N. Sato_, May 24 2004 %E A093996 Edited and extended by _Robert G. Wilson v_, May 29 2004