cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094008 Primes which are the denominators of convergents of the continued fraction expansion of e.

This page as a plain text file.
%I A094008 #24 Feb 16 2025 08:32:53
%S A094008 3,7,71,18089,10391023,781379079653017,2111421691000680031,
%T A094008 1430286763442005122380663256416207
%N A094008 Primes which are the denominators of convergents of the continued fraction expansion of e.
%C A094008 The position of a(n) in A000040 (the prime numbers) is A102049(n) = A000720(a(n)). - _Jonathan Sondow_, Dec 27 2004
%C A094008 The next term has 166 digits. [_Harvey P. Dale_, Aug 23 2011]
%H A094008 Joerg Arndt, <a href="/A094008/b094008.txt">Table of n, a(n) for n = 1..10</a>
%H A094008 E. B. Burger, <a href="https://www.jstor.org/stable/2695737">Diophantine Olympics and World Champions: Polynomials and Primes Down Under</a>, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
%H A094008 J. Sondow, <a href="https://www.jstor.org/stable/27642006">A geometric proof that e is irrational and a new measure of its irrationality</a>, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
%H A094008 J. Sondow, <a href="http://arxiv.org/abs/0704.1282"> A geometric proof that e is irrational and a new measure of its irrationality</a>, arXiv:0704.1282 [math.HO], 2007-2010.
%H A094008 J. Sondow and K. Schalm, <a href="http://arxiv.org/abs/0709.0671">Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II</a>, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
%H A094008 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/e.html">e</a>.
%F A094008 a(n) = A007677(A094007(n)) = A000040(A102049(n)).
%e A094008 a(1) = 3 because 3 is the first prime denominator of a convergent, 8/3, of the simple continued fraction for e
%t A094008 Block[{$MaxExtraPrecision=1000},Select[Denominator[Convergents[E,500]], PrimeQ]] (* _Harvey P. Dale_, Aug 23 2011 *)
%o A094008 (PARI)
%o A094008 default(realprecision,10^5);
%o A094008 cf=contfrac(exp(1));
%o A094008 n=0;
%o A094008 { for(k=1, #cf,  \\ generate b-file
%o A094008     pq = contfracpnqn( vector(k,j, cf[j]) );
%o A094008     p = pq[1,1];  q = pq[2,1];
%o A094008 \\    if ( ispseudoprime(p), n+=1; print(n," ",p) );  \\ A086791
%o A094008     if ( ispseudoprime(q), n+=1; print(n," ",q) );  \\ A094008
%o A094008 ); }
%o A094008 /* _Joerg Arndt_, Apr 21 2013 */
%Y A094008 Cf. A094007.
%Y A094008 See also A000040, A000720, A007677, A102049.
%K A094008 nonn
%O A094008 1,1
%A A094008 _Jonathan Sondow_, Apr 20 2004