This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094021 #15 Jul 06 2018 03:02:31 %S A094021 1,1,1,3,3,1,12,14,6,1,55,75,40,10,1,273,429,275,90,15,1,1428,2548, %T A094021 1911,770,175,21,1,7752,15504,13328,6370,1820,308,28,1,43263,95931, %U A094021 93024,51408,17640,3822,504,36,1,246675,600875,648945,406980,162792,42840 %N A094021 Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k components (1<=k<=n). %H A094021 Andrew Howroyd, <a href="/A094021/b094021.txt">Table of n, a(n) for n = 1..1275</a> %H A094021 P. Flajolet and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00372-0">Analytic combinatorics of noncrossing configurations</a>, Discrete Math. 204 (1999), 203-229. %F A094021 T(n, k) = binomial(n, k-1)*binomial(3n-2k-1, n-k)/(2n-k). %F A094021 G.f.: G=G(t, z) satisfies G^3+(t^3*z^2-t^2*z-3)G^2+(t^2*z+3)G-1=0. %F A094021 From _Peter Bala_, Nov 07 2015: (Start) %F A094021 O.g.f. A(x,t) = revert( x/((1 + x*t)*C(x)) ) with respect to x, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f for the Catalan numbers A000108. %F A094021 Row sums are A054727. (End) %e A094021 From _Andrew Howroyd_, Nov 17 2017: (Start) %e A094021 Triangle begins: %e A094021 1; %e A094021 1, 1; %e A094021 3, 3, 1; %e A094021 12, 14, 6, 1; %e A094021 55, 75, 40, 10, 1; %e A094021 273, 429, 275, 90, 15, 1; %e A094021 1428, 2548, 1911, 770, 175, 21, 1; %e A094021 7752, 15504, 13328, 6370, 1820, 308, 28, 1; %e A094021 (End) %e A094021 T(3,2)=3 because, with A,B,C denoting the vertices of a triangle, we have the 2-component forests (A,BC), (B,CA) and (C,AB). %p A094021 T:=proc(n,k) if k<=n then binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11); %t A094021 T[n_, k_] := If[k <= n, Binomial[n, k-1]*Binomial[3n-2k-1, n-k]/(2n-k), 0]; %t A094021 Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 06 2018 *) %o A094021 (PARI) %o A094021 T(n,k)=binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k); %o A094021 for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Nov 17 2017 %Y A094021 Columns k=1..2 are A001764, A026004. %Y A094021 Row sums are A054727. %Y A094021 Cf. A000108. %K A094021 nonn,tabl,easy %O A094021 1,4 %A A094021 _Emeric Deutsch_, May 31 2004