cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094046 Triangle read by rows: T(n,k) (n>=2; 0<=k<=floor(n/2)-1) is the number of noncrossing connected graphs on n nodes on a circle, having exactly k four-sided faces.

Original entry on oeis.org

1, 4, 22, 1, 141, 15, 988, 171, 3, 7337, 1778, 77, 56749, 17758, 1300, 12, 452332, 173826, 18315, 435, 3689697, 1683055, 233695, 9680, 55, 30652931, 16195344, 2804637, 171226, 2574, 258465558, 155280489, 32306742, 2647580, 70980, 273
Offset: 2

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Comments

T(2n,n-1) = A001764(n-1); T(n,0) = A045744(n).

Examples

			T(5,1)=15 because on the nodes A,B,C,D,E we have three connected noncrossing graphs having BCDE as the unique four-sided face: {AB,BC,CD,DE,EB}, {AE,BC,CD,DE,EB} and {AB,AE,BC,CD,DE,EB}; by circular permutations we obtain 5*3=15.
		

Programs

  • Maple
    T:=proc(n,k) if n=1 and k=0 then 1 elif n=1 and k>0 then 0 else binomial(n+k-2,k)*sum(binomial(n+k+i-2,i)*binomial(4*n-4-k-i,n-2*k-2-3*i),i=0..floor((n-2*k-2)/3))/(n-1) fi end: seq(seq(T(n,k),k=0..floor(n/2)-1),n=2..15);
  • Mathematica
    T[n_, k_] := Binomial[n+k-2, k] Sum[Binomial[n+k+i-2, i] Binomial[4n-4-k-i, n-2k-2-3i], {i, 0, (n-2k-2)/3}]/(n-1);
    Table[T[n, k], {n, 2, 15}, {k, 0, n/2-1}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)

Formula

T(n, k) = binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(4n-4-k-i, n-2k-2-3i), i=0..floor((n-2k-2)/3))/(n-1).
G.f. G=G(t, z) satisfies: G = z(1+G)^5/(1+G-G^3-tG^2).