This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094073 #27 May 19 2025 16:00:28 %S A094073 4,240,49938,24608160,23465221750,38341895571708,98780305524248572, %T A094073 377796303580335320432,2048907276496726375662702, %U A094073 15198414983297581845761672560,149768511689247547252666676150490 %N A094073 Coefficients arising in combinatorial field theory. %H A094073 Vincenzo Librandi, <a href="/A094073/b094073.txt">Table of n, a(n) for n = 1..160</a> %H A094073 P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, <a href="http://arXiv.org/abs/quant-ph/0405103">Combinatorial field theories via boson normal ordering</a>, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators" %H A094073 P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, <a href="https://doi.org/10.1063/1.1904161">Some useful combinatorial formulas for bosonic operators</a>, J. Math. Phys. 46, 052110 (2005) (6 pages). %F A094073 a(n) = (2n)!*bell(2n)*coeff(exp(x*sinh(x)), x^(2n)). - _Emeric Deutsch_, Jan 22 2005 %p A094073 with(combinat): a:=n->bell(2*n)*(2*n)!*coeff(series(exp(x*sinh(x)), x=0,40), x^(2*n)): seq(a(n),n=1..13); # _Emeric Deutsch_, Jan 22 2005 %t A094073 a[n_] := (2n)! BellB[2n] SeriesCoefficient[Exp[x Sinh[x]], {x, 0, 2n}]; %t A094073 Table[a[n], {n, 1, 11}] (* _Jean-François Alcover_, Nov 11 2018 *) %Y A094073 Cf. A000085, A005425, A094070, A094071, A094072, A094074. %Y A094073 Cf. A000110. %K A094073 nonn %O A094073 1,1 %A A094073 _N. J. A. Sloane_, May 01 2004 %E A094073 More terms from _Emeric Deutsch_, Jan 22 2005