cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094085 Denominator of (3*2^(n-1) - 1)*integral_{x=0 to 1/(4^n)}1-sqrt x dx.

Original entry on oeis.org

3, 96, 768, 6144, 49152, 393216, 3145728, 25165824, 201326592, 1610612736, 12884901888, 103079215104, 824633720832, 6597069766656, 52776558133248, 422212465065984, 3377699720527872, 27021597764222976, 216172782113783808
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Apr 30 2004

Keywords

Examples

			E.g., I(3)=11/768. The numerator is b(n) = 3*2^(n-1) - 1. E.g., b(3)=11.
		

Programs

  • Mathematica
    f[n_] := Denominator[(3*2^(n - 1) - 1)*Integrate[1 - Sqrt[x], {x, 0, 1/4^n}]]; Table[ f[n], {n, 19}] (* Robert G. Wilson v *)

Formula

a(n) = 12*8^(n-1) = 12*A001018 for n>1.

Extensions

Edited, corrected and extended by Robert G. Wilson v, May 08 2004