cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094094 Define x[1]...x[n] by the equations Sum_{j=1..n} x[j]^i = i, i=1..n; a(n) = n! * Sum_{j=1..n} x[j]^(n+1).

This page as a plain text file.
%I A094094 #9 Nov 13 2017 09:37:40
%S A094094 1,5,25,139,871,6131,48161,419399,4025071,42359239,486703009,
%T A094094 6081751259,82345132871,1203618149579,18920122802881,318578240878351,
%U A094094 5722495974697951,109204791111380879,2205128748183225281
%N A094094 Define x[1]...x[n] by the equations Sum_{j=1..n} x[j]^i = i, i=1..n; a(n) = n! * Sum_{j=1..n} x[j]^(n+1).
%C A094094 Suggested by Example 2.24 in Lozansky and Rousseau. Hint: use Newton's equations.
%D A094094 E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see p. 103.
%F A094094 E.g.f.: (1-exp(x/(x-1)))/(1-x)^2. - _Vladeta Jovovic_, May 03 2004
%F A094094 a(n) = n!*(n+1-LaguerreL(n,1,1)) = Sum_{k=1..n} (-1)^(k+1)*n!/k!*binomial(n+1,k+1). - _Vladeta Jovovic_, Apr 27 2006
%F A094094 a(n) = (3*n - 1)*a(n-1) - n*(3*n - 4)*a(n-2) + (n-2)*(n-1)*n*a(n-3). - _Vaclav Kotesovec_, Nov 13 2017
%t A094094 Table[Sum[(-1)^(k+1)*n!/k!*Binomial[n+1, k+1], {k, 1, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Nov 13 2017 *)
%Y A094094 Cf. A066668.
%K A094094 nonn,easy
%O A094094 1,2
%A A094094 _N. J. A. Sloane_, May 02 2004
%E A094094 More terms from _Vladeta Jovovic_, May 03 2004