cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048790 Array read by antidiagonals: T(n,k) = number of rooted n-dimensional polycubes with k cells, with no symmetries removed (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 18, 4, 1, 8, 45, 76, 5, 1, 10, 84, 344, 315, 6, 1, 12, 135, 936, 2670, 1296, 7, 1, 14, 198, 1980, 10810, 20886, 5320, 8, 1, 16, 273, 3604, 30475, 127632, 164514, 21800, 9, 1, 18, 360, 5936, 69405, 483702, 1531180, 1303304, 89190, 10, 1
Offset: 1

Views

Author

Keywords

Examples

			Array begins:
n\k 1..2...3.....4......5.......6........7........8........9.....10......11......12.......13
1 | 1..2...3.....4......5.......6........7........8........9.....10......11......12.......13
2 | 1..4..18....76....315....1296.....5320....21800....89190.364460.1487948.6070332.24750570
3 | 1..6..45...344...2670...20886...164514..1303304.10375830
4 | 1..8..84...936..10810..127632..1531180.18589840
5 | 1.10.135..1980..30475..483702..7847525
6 | 1.12.198..3604..69405.1386048.28403620
7 | 1.14.273..5936.137340.3307878
8 | 1.16.360..9104.246020
9 | 1.18.459.13236.409185
		

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

Rows give A048663-A048668, A094101. Columns give A094159-A094161. Cf. A094100.

Extensions

More terms from Joshua Zucker, Aug 14 2006
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar

A094100 Fit a polynomial of degree k-1 to column k of array in A048790, evaluate it at dimension n = -1.

Original entry on oeis.org

1, -2, 9, -64, 560, -5370, 53788, -555864, 5957685, -66459200, 763983132, -8919566196, 105678848821, -1286858544734
Offset: 1

Views

Author

Keywords

Comments

Might be thought of as number of rooted (-1)-dimensional "polycubes" with n cells, with no symmetries removed.

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

Extensions

a(9)-a(14) using Luther & Mertens's formulas added by Andrei Zabolotskii, Jun 27 2025
Showing 1-2 of 2 results.