cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094104 Primes of the form 2*prime(n) + prime(n+1).

This page as a plain text file.
%I A094104 #21 Aug 27 2024 22:19:45
%S A094104 7,11,17,43,53,61,89,179,241,313,331,353,449,593,673,683,691,719,733,
%T A094104 809,859,1021,1051,1237,1259,1321,1481,1709,1741,1933,1979,2083,2111,
%U A094104 2137,2221,2237,2311,2333,2371,2473,2531,2741,2767,2957,3163,3469,3643
%N A094104 Primes of the form 2*prime(n) + prime(n+1).
%C A094104 No intersection with A094105 (Primes of the form prime(m) + 2*prime(m+1)). In general, an integer of the form 2*prime(m) + prime(m+1) cannot be of the form prime(n) + 2*prime(n+1). - _Zak Seidov_, May 03 2014
%H A094104 Zak Seidov, <a href="/A094104/b094104.txt">Table of n, a(n) for n = 1..1000</a>
%e A094104 a(7) = 2*29 + 31 = 89.
%t A094104 f[n_] := (2Prime[n] + Prime[n + 1]); f[ # ] & /@ Select[Range[160], PrimeQ[f[ # ]] &] (* _Robert G. Wilson v_ *)
%t A094104 Select[2#[[1]]+#[[2]]&/@Partition[Prime[Range[300]],2,1],PrimeQ] (* _Harvey P. Dale_, Jul 19 2022 *)
%o A094104 (PARI) q=2;forprime(p=3,1300,if(isprime(r=2*q+p),print1(r,","));q=p)
%Y A094104 Cf. A094105.
%K A094104 nonn,easy
%O A094104 1,1
%A A094104 _Giovanni Teofilatto_, May 02 2004
%E A094104 Corrected and extended by _Klaus Brockhaus_ and _Robert G. Wilson v_, May 07 2004