cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094106 a(n) is the maximal length L of a "power floor prime" sequence, i.e., a sequence of the form floor(x^k), k = 1, 2, ..., L such that floor(x) = prime(n).

Original entry on oeis.org

8, 7, 8, 5, 10, 12, 16, 14, 18, 22, 24, 26, 27, 28, 34, 35, 37, 39, 40, 45, 43, 46, 49, 51, 55, 57
Offset: 1

Views

Author

Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), May 02 2004

Keywords

Examples

			a(1)=8 because for x=111/47 the sequence [x^k], k=1,2,... 2,5,13,31,73,173,409,967,... starts with 8 primes and this is the maximum for any x with [x]=2. (Compare also A063636, though the rational number x = 1287/545 used there is not of minimal height!)
		

References

  • Crandall and Pomerance, "Prime numbers, a computational perspective", p. 69, Research Problem 1.75.

Crossrefs

Extensions

a(22) = 46 from Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), Jun 03 2004
a(23) = 49 from Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), Jun 27 2004
a(24) = 51 from Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), Aug 08 2004
a(25) and a(26) from Michael Kenn (michael.kenn(AT)philips.com), Jan 03 2006, who says: To achieve this result I used a shared network of 37 computers over the Christmas holidays. The total calculation time was equivalent to slightly more than 1 CPU year of a P4 - 2.4GHz.