This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094191 #15 Mar 18 2018 03:40:24 %S A094191 3,15,45,96,192,240,576,480,720,960,12288,1440,3600,3840,2880,3360, %T A094191 20736,5040,147456,6720,11520,14400,50331648,10080,25920,245760,25200, %U A094191 26880,3221225472,20160,57600,30240,184320,3932160,103680,40320,129600,2985984,737280,60480,13194139533312,80640,9663676416,430080,100800,251658240,84934656,110880,921600,181440 %N A094191 a(n) = smallest positive number that occurs exactly n times as a difference between two positive squares. %C A094191 Related to A005179, "Smallest number with exactly n divisors", with which it shares a lot of common terms (in different positions). %C A094191 It appears that, for entries having prime index p > 3, the minimal solution is 2^(p+1)*3 for Sophie Germain primes p. The number 43 is not such a prime, and we have the smaller solution 2^30*3^2. - _T. D. Noe_, Mar 14 2018 %H A094191 T. D. Noe, <a href="/A094191/b094191.txt">Table of n, a(n) for n = 1..999</a> %H A094191 Johan Claes, <a href="https://www.uhasselt.be/fiche_en?email=johan.claes">homepage</a>. [Broken link (unknown server) replaced with link to current user's "homepage". - _M. F. Hasler_, Mar 14 2018] %e A094191 a(1)=3 because there is only one difference of positive squares which equals 3 (2^2-1^1). %e A094191 a(2)=15 because 15 = 4^2-1^2 = 8^2-7^2. %e A094191 a(3)=45 because 45 = 7^2-2^2 = 9^2-6^2 = 23^2-22^2. %t A094191 s = Split[ Sort[ Flatten[ Table[ Select[ Table[ b^2 - c^2, {c, b - 1}], # < 500000 &], {b, 250000}]]]]; f[s_, p_] := Block[{l = Length /@ s}, If[ Position[l, p, 1, 1] != {}, d = s[[ Position[l, p, 1, 1][[1, 1]] ]] [[1]], d = 0]; d]; t = Table[ f[s, n], {n, 36}] (* _Robert G. Wilson v_, Jun 04 2004 *) %o A094191 (PARI) {occurrences(d)=local(c,n,a);c=0;for(n=1,(d-1)\2,if(issquare(a=n^2+d),c++));c} {m=50;z=30000;v=vector(m,n,-1);for(d=1,z,k=occurrences(d);if(0<k&&k<=m&&v[k]<0,v[k]=d));for(n=1,m,print1(v[n],","))} \\ _Klaus Brockhaus_ %Y A094191 Cf. A068314. %K A094191 nonn %O A094191 1,1 %A A094191 _Johan Claes_, Jun 02 2004 %E A094191 Edited by _Don Reble_ and _Klaus Brockhaus_, Jun 04 2004 %E A094191 Further terms from _Johan Claes_, Jun 07 2004 %E A094191 a(43) corrected by _T. D. Noe_, Mar 14 2018