This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094223 #21 Jan 20 2024 13:50:18 %S A094223 1,2,7,68,2251,247016,89254228,108168781424,451141297789858, %T A094223 6625037125817801312,348562672319990399962384, %U A094223 66545827618461283102105245248,46543235997095840080425299916917968,120155975713532210671953821005746669185792,1152009540439950050422144845158703009569109376384 %N A094223 Number of binary n X n matrices with all rows (columns) distinct, up to permutation of columns (rows). %H A094223 Andrew Howroyd, <a href="/A094223/b094223.txt">Table of n, a(n) for n = 0..50</a> %H A094223 Goran Kilibarda and Vladeta Jovovic, <a href="https://arxiv.org/abs/1411.4187">Enumeration of some classes of T_0-hypergraphs</a>, arXiv:1411.4187 [math.CO], 2014. %F A094223 a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*binomial(2^k, n). %F A094223 a(n) = Sum_{k=0..n} Stirling1(n, k)*binomial(2^k+n-1, n). %t A094223 a[n_] := Sum[(-1)^(n - k)*StirlingS1[n, k]*Binomial[2^k, n], {k, 0, n}]; (* or *) a[n_] := Sum[ StirlingS1[n, k]*Binomial[2^k + n - 1, n], {k, 0, n}]; Table[ a[n], {n, 0, 12}] (* _Robert G. Wilson v_, May 29 2004 *) %o A094223 (PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(2^k+n-1, n)); \\ _Michel Marcus_, Dec 17 2022 %Y A094223 Main diagonal of A059584 and A059587, A060690, A088309. %Y A094223 Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763 %K A094223 easy,nonn %O A094223 0,2 %A A094223 Goran Kilibarda and _Vladeta Jovovic_, May 28 2004 %E A094223 More terms from _Robert G. Wilson v_, May 29 2004 %E A094223 a(13) onwards from _Andrew Howroyd_, Jan 20 2024