This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094294 #30 Jun 16 2019 08:07:56 %S A094294 1,2,5,18,87,518,3621,28962,260651,2606502,28671513,344058146, %T A094294 4472755887,62618582406,939278736077,15028459777218,255483816212691, %U A094294 4598708691828422,87375465144740001,1747509302894800002,36697695360790800023,807349297937397600486,18569033852560144811157 %N A094294 a(n) = n*a(n-1) - n + 2 for n > 1; a(1)=1. %C A094294 Index of the first occurrence of n in A094293. %C A094294 For n >= 3, a(n) is also the number of the minimal nonobtuse binary triangulations of the unit n-cube (see Brandts et al. link). %H A094294 Jan Brandts, Sander Dijkhuis, Vincent de Haan, and Michal Křížek, <a href="http://arxiv.org/abs/1209.3875">There are only two nonobtuse binary triangulations of the unit n-cube</a>, arXiv:1209.3875 [math.CO] and Comput. Geom. 46 (2013) 286. %F A094294 a(n+1) = (n+1)*a(n) - n + 1, or a(n) = n*a(n-1) - (n-2). [Corrected by _M. F. Hasler_, Apr 09 2009] %F A094294 a(n) = 1 + Sum_{k=2..n} n!/k! = ceiling(n!*(e-2)). - _Michel Marcus_, Sep 19 2012 %F A094294 Conjecture: (-n+3)*a(n) + (n^2-2*n-2)*a(n-1) - (n-1)*(n-2)*a(n-2) = 0. - _R. J. Mathar_, Sep 10 2015 %e A094294 From _M. F. Hasler_, Apr 09 2009: (Start) %e A094294 a(1) = 1; %e A094294 a(2) = 2*a(1) - 0 = 2; %e A094294 a(3) = 3*a(2) - 1 = 5; %e A094294 a(4) = 4*a(3) - 2 = 18; %e A094294 a(5) = 5*a(4) - 3 = 87. (End) %p A094294 A094294 := proc(n) %p A094294 option remember; %p A094294 if n =1 then %p A094294 1 ; %p A094294 else %p A094294 n*procname(n-1)-n+2 ; %p A094294 end if; %p A094294 end proc: # _R. J. Mathar_, Feb 06 2016 %t A094294 a[1] = 1; a[n_] := a[n] = n*a[n - 1] - n + 2; %t A094294 Array[a, 23] (* _Jean-François Alcover_, Dec 14 2017 *) %o A094294 (PARI) A094294(n)={ local(a=1); for( k=2,n, a=k*a-k+2); a } \\ _M. F. Hasler_, Apr 09 2009 %Y A094294 Cf. A001511, A094293. %K A094294 nonn,easy %O A094294 1,2 %A A094294 _Amarnath Murthy_, Apr 28 2004 %E A094294 Edited, corrected and extended by _M. F. Hasler_, Apr 09 2009