cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094304 Sum of all possible sums formed from all but one of the previous terms, starting 1.

This page as a plain text file.
%I A094304 #40 Nov 24 2019 18:59:53
%S A094304 1,0,1,4,18,96,600,4320,35280,322560,3265920,36288000,439084800,
%T A094304 5748019200,80951270400,1220496076800,19615115520000,334764638208000,
%U A094304 6046686277632000,115242726703104000,2311256907767808000,48658040163532800000,1072909785605898240000
%N A094304 Sum of all possible sums formed from all but one of the previous terms, starting 1.
%C A094304 Apart from initial 1, same sequence as A001563. Additive analog of A057438.
%C A094304 a(1) = 1, for n >= 2: a(n) = sum of previous terms * (n-2) = (Sum_(i=1...n-2) a(i)) * (n-2). a(n) = A001563(n-2) = A094258(n-1) for n >= 3. - _Jaroslav Krizek_, Oct 16 2009
%H A094304 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>
%F A094304 a(n) = (n-2)!(n-2) for n>=2. - _Emeric Deutsch_, May 01 2008
%F A094304 G.f.: x*T(0), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 -x -2*x*k)*(1 -3*x -2*x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 10 2013
%F A094304 a(n) = S1(n,1) - S1(n-1,1), where S1 are the unsigned Stirling cycle numbers. - _Peter Luschny_, Apr 10 2016
%F A094304 a(n) = A122974(n-1,n-1). - _Alois P. Heinz_, Nov 24 2019
%e A094304 a(2) = 0 as there is only one previous term and empty sum is taken to be 0.
%e A094304 a(4) = (a(1) +a(2))+ (a(1) +a(3)) + (a(2) +a(3)) = (1+0) +(1+1) +(0+1) = 4.
%e A094304 a(5) = (a(1)+a(2)+a(3)) +(a(1)+a(2)+ a(4)) +(a(1)+a(3)+a(4)) +(a(2)+a(3)+a(4)) = (1+0+1) +(1+0+4) +(1+1+4) +(0+1+4) = 2 + 5 + 6 + 5 = 18.
%p A094304 a := n -> (n-2)*(n-2)!: 1,seq(a(n), n=2..23); # _Emeric Deutsch_, May 01 2008
%t A094304 In[2]:= l = {1}; Do[k = Length[l] - 1; p = Plus @@ Flatten[Select[Subsets[l], Length[ # ]==k& ]]; AppendTo[l, p], {n, 20}]; l (* _Ryan Propper_, May 28 2006 *)
%o A094304 (PARI) v=vector(30);v[1]=1;v[2]=0;for(n=3,#v,s=0;for(i=1,2^(n-1)-1, vb=binary(i); if(hammingweight(vb)==n-2,s=s+sum(j=1,#vb, if(vb[j], v[n-#vb+j-1]))));v[n]=s;print1(s,",")) /* _Ralf Stephan_, Sep 22 2013 */
%Y A094304 Cf. A001563, A057438, A122974.
%K A094304 nonn
%O A094304 1,4
%A A094304 _Amarnath Murthy_, Apr 29 2004
%E A094304 Edited by _N. J. A. Sloane_, May 29 2006