This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094305 #50 Jul 11 2023 12:04:21 %S A094305 1,3,3,6,12,6,10,30,30,10,15,60,90,60,15,21,105,210,210,105,21,28,168, %T A094305 420,560,420,168,28,36,252,756,1260,1260,756,252,36,45,360,1260,2520, %U A094305 3150,2520,1260,360,45,55,495,1980,4620,6930,6930,4620,1980,495,55,66 %N A094305 Triangle read by rows: T(n,k) = ((n+1)(n+2)/2) * binomial(n,k) (0 <= k <= n). %C A094305 Sum of all possible sums of k+1 numbers chosen from among the first n+1 numbers. Additive analog of triangle of Stirling numbers of first kind (A008275). - _David Wasserman_, Oct 04 2007 %C A094305 Third slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o)+a(m,n-1,o)+a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - _Thomas Wieder_, Aug 06 2006 %C A094305 Triangle T(n,k), 0<=k<=n, read by rows given by [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] DELTA [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 07 2007 %C A094305 T(n,k) is the number of ordered triples of bit strings with n bits and exactly k 1's over all bits in the triple. For example for n=1 we have (0,e,e),(e,0,e),(e,e,0),(1,e,e),(e,1,e),(e,e,1) where e is the empty string. - _Geoffrey Critzer_, Apr 06 2013 %C A094305 T(n,k) = A000217(n+1) * A007318(n,k), 0 <= k <= n. - _Reinhard Zumkeller_, Jul 30 2013 %D A094305 A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 152. %H A094305 Reinhard Zumkeller, <a href="/A094305/b094305.txt">Rows n = 0..100 of table, flattened</a> %H A094305 Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Merca2/merca7.html">A Special Case of the Generalized Girard-Waring Formula</a>, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. %F A094305 T(n,k) = Sum_{i=1..k+1} (-1)^(i+1)*i^2*binomial(n+2,k+i+1)*binomial(n+2,k-i+1). - _Mircea Merca_, Apr 05 2012 %F A094305 O.g.f.: 1/(1 - x - y*x)^3. - _Geoffrey Critzer_, Apr 06 2013 %e A094305 Triangle begins: %e A094305 1 %e A094305 3 3 %e A094305 6 12 6 %e A094305 10 30 30 10 %e A094305 15 60 90 60 15 %e A094305 21 105 210 210 105 21 %e A094305 ... %e A094305 The n-th row is the product of the n-th triangular number and the n-th row of Pascal's triangle. The fifth row is (15,60,90,60,15) or 15*{1,4,6,4,1}. %p A094305 A094305:= proc(n,k) (n+1)*(n+2)/2 * binomial(n,k); end; %t A094305 nn=10; f[list_]:=Select[list,#>0&];a=1/(1-x-y x); Map[f,CoefficientList[Series[a^3,{x,0,nn}],{x,y}]]//Grid %t A094305 (* _Geoffrey Critzer_, Apr 06 2013 *) %t A094305 Flatten[Table[((n+1)(n+2))/2 Binomial[n,k],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Aug 31 2014 *) %o A094305 (Haskell) %o A094305 a094305 n k = a094305_tabl !! n !! k %o A094305 a094305_row n = a094305_tabl !! n %o A094305 a094305_tabl = zipWith (map . (*)) (tail a000217_list) a007318_tabl %o A094305 -- _Reinhard Zumkeller_, Jul 30 2013 %Y A094305 For a closely related array that also includes a row and column of zeros see A129533. %Y A094305 Columns include A000217. Row sums are A001788. Cf. A094306. %Y A094305 Cf. A003506, A121547, A121306, A119800, A000217, A007318. %K A094305 nonn,tabl,easy %O A094305 0,2 %A A094305 _Amarnath Murthy_, Apr 29 2004 %E A094305 Edited by _Ralf Stephan_, Feb 04 2005 %E A094305 Further comments from _David Wasserman_, Oct 04 2007 %E A094305 Further editing by _N. J. A. Sloane_, Oct 07 2007