cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094306 Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 4.

Original entry on oeis.org

1, 3, 10, 30, 88, 252, 712, 1992, 5536, 15312, 42208, 116064, 318592, 873408, 2392192, 6547584, 17912320, 48985344, 133926400, 366085632, 1000548352, 2734316544, 7471826944, 20416481280, 55785005056, 152419749888
Offset: 2

Views

Author

Herbert Kociemba, Jun 02 2004

Keywords

Comments

In general, a(n,m,j,k) = (2/m)*Sum_{r=1..m-1} Sin(j*r*Pi/m)*Sin(k*r*Pi/m)*(1+2*cos(Pi*r/m))^n) is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) -s(i-1)| <= 1 for i = 1,2,...,n, s(0) = j, s(n) = k.

Programs

  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(1/3)Sum[ Sin[Pi*k/3] Sin[2Pi*k/3] (1 + 2Cos[Pi*k/6])^n, {k, 1, 5}]]]; Table[ f[n], {n, 2, 27}] (* Robert G. Wilson v, Jun 18 2004 *)
  • PARI
    Vec(x^2*(1 - x) / ((1 - 2*x)*(1 - 2*x - 2*x^2)) + O(x^35)) \\ Colin Barker, Oct 29 2019

Formula

a(n) = ((1-sqrt(3))^n + (1+sqrt(3))^n - 2^n)/4.
a(n) = (1/3)*Sum_{k=1..5} Sin(Pi*k/3)*Sin(2*Pi*k/3)*(1+2*cos(Pi*k/6))^n.
From Colin Barker, Oct 29 2019: (Start)
G.f.: x^2*(1 - x) / ((1 - 2*x)*(1 - 2*x - 2*x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) for n>4.
(End)