This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094328 #31 Dec 14 2023 05:10:36 %S A094328 4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9, %T A094328 6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7, %U A094328 9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6,4,5,7,9,6 %N A094328 Iterate the map in A006369 starting at 4. %D A094328 J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270. %H A094328 Reinhard Zumkeller, <a href="/A094328/b094328.txt">Table of n, a(n) for n = 1..10000</a> %H A094328 J. C. Lagarias, <a href="http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/paper.html">The 3x+1 problem and its generalizations</a>, Amer. Math. Monthly, 92 (1985), 3-23. %H A094328 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %H A094328 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 1). %F A094328 The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3. %F A094328 Periodic with period length 5. %t A094328 Table[{4, 5, 7, 9, 6}, {21}] // Flatten (* _Jean-François Alcover_, Jun 10 2013 *) %t A094328 LinearRecurrence[{0, 0, 0, 0, 1},{4, 5, 7, 9, 6},105] (* _Ray Chandler_, Sep 03 2015 *) %o A094328 (Haskell) %o A094328 a094328 n = a094328_list !! (n-1) %o A094328 a094328_list = iterate a006369 4 -- _Reinhard Zumkeller_, Dec 31 2011 %o A094328 (PARI) a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,0,0,0]^(n-1)*[4;5;7;9;6])[1,1] \\ _Charles R Greathouse IV_, Oct 18 2022 %Y A094328 Cf. A006368, A028394-A028397, A094329, A185589, A185590. %K A094328 nonn,easy %O A094328 1,1 %A A094328 _N. J. A. Sloane_, Jun 04 2004