A094342 Successive record-setters for tau(n+1)*tau(n-1)/tau(n)^2, where tau(n) is the number of divisors of n.
2, 3, 5, 7, 11, 17, 19, 29, 41, 71, 181, 239, 379, 449, 701, 881, 1429, 1871, 2729, 3079, 4159, 10529, 11969, 23561, 40699, 51679, 90271, 104651, 146719, 226799, 244529, 252449, 388961, 403649, 825551, 906751, 1276001, 2408561, 2648449, 3807649, 4058209, 4406401
Offset: 1
Examples
tau(16)*tau(18)/tau(17)^2 = 5*6/2^2 = 15/2 and this is larger than for any n < 17, so 17 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..61
Crossrefs
Cf. A090481.
Programs
-
Maple
f := x -> tau(x-1)*tau(x+1)/tau(x)^2:?print m := 1: A := []: for k from 2 to 10^6 do if f(k) > m then m := f(k): A := [op(A), [k, f(k)]]: fi; od;
-
Mathematica
s = {}; d1 = 1; d2 = 2; rm = 0; Do[d3 = DivisorSigma[0, n]; r = d1*d3/d2^2; If[r > rm, rm = r; AppendTo[s, n - 1]]; d1 = d2; d2 = d3, {n, 3, 10000}]; s (* Amiram Eldar, Aug 28 2019 *)
Extensions
a(1) = 2 and more terms added by Amiram Eldar, Aug 28 2019
Comments