cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094345 Sum of all digits in ternary expansions of 0, ..., n.

This page as a plain text file.
%I A094345 #32 Nov 19 2024 03:26:22
%S A094345 0,1,3,4,6,9,11,14,18,19,21,24,26,29,33,36,40,45,47,50,54,57,61,66,70,
%T A094345 75,81,82,84,87,89,92,96,99,103,108,110,113,117,120,124,129,133,138,
%U A094345 144,147,151,156,160,165,171,176,182,189,191,194,198,201,205,210,214,219
%N A094345 Sum of all digits in ternary expansions of 0, ..., n.
%D A094345 Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 94.
%H A094345 Amiram Eldar, <a href="/A094345/b094345.txt">Table of n, a(n) for n = 0..10000</a>
%H A094345 Jean Coquet, <a href="https://doi.org/10.1016/0022-314X(86)90067-3">Power sums of digital sums</a>, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
%H A094345 P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, <a href="http://math.sun.ac.za/~hproding/abstract/abs_80.htm">On the moments of the sum-of-digits function</a>, <a href="http://math.sun.ac.za/~hproding/pdffiles/st_andrews.pdf">PDF</a>, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), pp. 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
%H A094345 Hsien-Kuei Hwang, Svante Janson and Tsung-Hsi Tsai, <a href="https://doi.org/10.1145/3127585">Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications</a>, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47; <a href="https://www.researchgate.net/profile/Hsien-Kuei-Hwang/publication/320642171_Exact_and_Asymptotic_Solutions_of_a_Divide-and-Conquer_Recurrence_Dividing_at_Half_Theory_and_Applications/links/59f9a5be0f7e9b553ec0eaad">ResearchGate link</a>; <a href="http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf">preprint</a>, 2016.
%H A094345 J.-L. Mauclaire and Leo Murata, <a href="https://dx.doi.org/10.3792/pjaa.59.274">On q-additive functions. I</a>, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
%H A094345 J.-L. Mauclaire and Leo Murata, <a href="https://dx.doi.org/10.3792/pjaa.59.441">On q-additive functions. II</a>, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
%H A094345 J. R. Trollope, <a href="http://www.jstor.org/stable/2687954">An explicit expression for binary digital sums</a>, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
%F A094345 Asymptotically: a(n) = n*log(n)/log(3) + n*F(log(n)/log(3)) where F is a continuous function of period 1 nowhere differentiable (see Allouche & Shallit book).
%t A094345 a[n_] := Plus @@ IntegerDigits[n, 3]; Accumulate @ Array[a, 60, 0] (* _Amiram Eldar_, Dec 09 2021 *)
%o A094345 (PARI) s(k,n)=n-(k-1)*sum(m=1,n,valuation(m,k));
%o A094345 a(n)=sum(i=0,n,s(3,i))
%o A094345 (PARI) a(n)= sum(i=1, n, sumdigits(i, 3)); \\ _Ruud H.G. van Tol_, Nov 19 2024
%Y A094345 Cf. A000788, A053735, A231503, A231504, A231505.
%K A094345 nonn,base
%O A094345 0,3
%A A094345 _Benoit Cloitre_, Jun 08 2004