cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094383 Primes p such that d>0 exists and p-d, p-2*d and p-3*d are also primes.

This page as a plain text file.
%I A094383 #17 Sep 10 2014 12:21:15
%S A094383 23,29,41,43,53,59,79,83,97,101,103,107,113,127,131,139,149,151,157,
%T A094383 163,167,173,181,191,193,197,199,223,227,229,233,239,241,251,257,263,
%U A094383 269,271,281,283,293,307,311,313,317,331,347,349,353,359,367,373,383
%N A094383 Primes p such that d>0 exists and p-d, p-2*d and p-3*d are also primes.
%C A094383 Conjecture: only 25 primes are not in the sequence, namely 2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 47, 61, 67, 71, 73, 89, 109, 137, 179, 211, 277, 337, 379, 499, 557. - _Alex Ratushnyak_, Sep 08 2012
%H A094383 Vincenzo Librandi, <a href="/A094383/b094383.txt">Table of n, a(n) for n = 1..1000</a>
%e A094383 59=prime(17) -> 59-6=53=prime(16) -> 53-6=47=prime(15) ->
%e A094383 47-6=41=prime(13), therefore 59 is a term; also 59 -> 59-18=41=prime(13) ->
%e A094383 41-18=23=prime(9) -> 23-18=5=prime(3).
%t A094383 prms = 3; fQ[p_] := Module[{d = 1}, While[prms*d < p && Union[PrimeQ[p - Range[prms]*d]] != {True}, d++]; prms*d < p]; Select[Prime[Range[2, PrimePi[383]]], fQ] (* _T. D. Noe_, Sep 08 2012 *)
%o A094383 (PARI) is(n)=my(t); forprime(p=2,n-6,if((n-p)%3==0 && isprime((t=(n-p)/3)+p) && isprime(2*t+p) && isprime(n), return(1))); 0 \\ _Charles R Greathouse IV_, Sep 10 2014
%Y A094383 Cf. A094382, A216495, A216496, A216497, A216498, A216468.
%K A094383 nonn
%O A094383 1,1
%A A094383 _Reinhard Zumkeller_, Apr 28 2004