cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094391 A Beatty sequence using exp(Pi/4)/(exp(Pi/4) - 1).

This page as a plain text file.
%I A094391 #7 Sep 27 2024 02:13:00
%S A094391 1,3,5,7,9,11,12,14,16,18,20,22,23,25,27,29,31,33,34,36,38,40,42,44,
%T A094391 45,47,49,51,53,55,56,58,60,62,64,66,68,69,71,73,75,77,79,80,82,84,86,
%U A094391 88,90,91,93,95,97,99,101,102,104,106,108,110,112,113,115,117,119,121,123
%N A094391 A Beatty sequence using exp(Pi/4)/(exp(Pi/4) - 1).
%C A094391 Beatty complement is A094390.
%H A094391 G. C. Greubel, <a href="/A094391/b094391.txt">Table of n, a(n) for n = 1..10000</a>
%F A094391 a(n) = floor(n * exp(Pi/4)/(exp(Pi/4) - 1)).
%t A094391 c = E^(Pi/4); d = c/(c-1); Table[Floor[n*d], {n,70}]
%o A094391 (Magma)
%o A094391 R:= RealField(100);
%o A094391 [Floor(n*Exp(Pi(R)/4)/(Exp(Pi(R)/4)-1)): n in [1..100]]; // _G. C. Greubel_, Sep 27 2024
%o A094391 (SageMath)
%o A094391 [int(n*exp(pi/4)/(exp(pi/4)-1)) for n in range(1,101)] # _G. C. Greubel_, Sep 27 2024
%Y A094391 Cf. A094390.
%K A094391 nonn
%O A094391 1,2
%A A094391 _Robert G. Wilson v_, Apr 28 2004