This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094392 #20 Jan 05 2025 19:51:37 %S A094392 1,1,1,1,1,2,1,1,1,3,1,1,1,1,5,1,1,1,1,2,8,1,1,1,1,1,3,13,1,1,1,1,1,1, %T A094392 5,21,1,1,1,1,1,1,2,7,34,1,1,1,1,1,1,1,3,11,55,1,1,1,1,1,1,1,1,5,16, %U A094392 89,1,1,1,1,1,1,1,1,2,7,25,144,1,1,1,1,1,1,1,1,1,3,11,37,233,1,1,1,1,1,1,1,1,1 %N A094392 Antidiagonals of the tables formed from b(m,2,n,n), which is defined in Du 1989. %H A094392 Bau-Sen Du, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/27-2/du.pdf">A Simple Method Which Generates Infinitely Many Congruence Identities</a>, Fib. Quart. 27 (1989), 116-124. %H A094392 Bau-Sen Du, <a href="http://arXiv.org/abs/0706.2421">A Simple Method Which Generates Infinitely Many Congruence Identities</a>, arXiv:0706.2421 [math.NT], 2007. %F A094392 For i=2 and k >= 1 b(k+2, 2, n, n)=b(k, 2, 1, n) + b(k+1, 2, n, n). The remaining portion for the recurrence is defined in Du 1989. %e A094392 E.g., for m = 5 and n = 2, b(5,2,2,2)= b(3,2,1,2) + b(4,2,2,2)= 2 because of the definition in the reference. %e A094392 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 8 3 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 13 5 2 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 21 7 3 1 1 1 1 1 1 1 1 1 1 1 1 %e A094392 34 11 5 2 1 1 1 1 1 1 1 1 1 1 1 %e A094392 55 16 7 3 1 1 1 1 1 1 1 1 1 1 1 %e A094392 89 25 11 5 2 1 1 1 1 1 1 1 1 1 1 %e A094392 144 37 15 7 3 1 1 1 1 1 1 1 1 1 1 %e A094392 233 57 23 11 5 2 1 1 1 1 1 1 1 1 1 %e A094392 377 85 32 15 7 3 1 1 1 1 1 1 1 1 1 %e A094392 610 130 49 23 11 5 2 1 1 1 1 1 1 1 1 %p A094392 b := proc(k,i,j,n) option remember; if k = 1 then if i = 1 then return 0; end if; if i = 2 then if j = n then return 1; end if; return 0; end if; end if; if k = 2 then if i = 1 then return 1; end if; if i = 2 then if j = n then return 1; end if; return 0; end if; end if; if j = n then return b(k-2, i, 1, n) + b(k-1, i, n, n); end if; return b(k-2, i, 1, n) + b(k-2, i, j+1, n); end proc; # Chris Deugau (deugaucj(AT)uvic.ca), Dec 19 2005 %t A094392 b[k_, i_, j_, n_] := b[k, i, j, n] = Which[k == 1, Which[i == 1, 0, i == 2 , If[j == n, 1, 0], True, 0], k == 2, Which[i == 1, 1, i == 2, If[j == n, 1, 0], True, 0], j == n, b[k - 2, i, 1, n] + b[k - 1, i, n, n], True, b[k - 2, i, 1, n] + b[k - 2, i, j + 1, n]]; %t A094392 a[m_, n_] := b[m, 2, n, n]; %t A094392 Table[a[m - n + 1, n], {m, 1, 14}, {n, m, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 21 2017, adapted from Maple *) %Y A094392 Cf. A006206 (A_{n,1}), A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392. %K A094392 nonn,tabl %O A094392 1,6 %A A094392 Amy Robinson (amylou(AT)mchsi.com), Apr 28 2004 %E A094392 Corrected and extended by Chris Deugau (deugaucj(AT)uvic.ca), Dec 19 2005 %E A094392 Typo 891 -> 89,1 corrected by _Jean-François Alcover_, Nov 21 2017