cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094392 Antidiagonals of the tables formed from b(m,2,n,n), which is defined in Du 1989.

This page as a plain text file.
%I A094392 #20 Jan 05 2025 19:51:37
%S A094392 1,1,1,1,1,2,1,1,1,3,1,1,1,1,5,1,1,1,1,2,8,1,1,1,1,1,3,13,1,1,1,1,1,1,
%T A094392 5,21,1,1,1,1,1,1,2,7,34,1,1,1,1,1,1,1,3,11,55,1,1,1,1,1,1,1,1,5,16,
%U A094392 89,1,1,1,1,1,1,1,1,2,7,25,144,1,1,1,1,1,1,1,1,1,3,11,37,233,1,1,1,1,1,1,1,1,1
%N A094392 Antidiagonals of the tables formed from b(m,2,n,n), which is defined in Du 1989.
%H A094392 Bau-Sen Du, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/27-2/du.pdf">A Simple Method Which Generates Infinitely Many Congruence Identities</a>, Fib. Quart. 27 (1989), 116-124.
%H A094392 Bau-Sen Du, <a href="http://arXiv.org/abs/0706.2421">A Simple Method Which Generates Infinitely Many Congruence Identities</a>, arXiv:0706.2421 [math.NT], 2007.
%F A094392 For i=2 and k >= 1 b(k+2, 2, n, n)=b(k, 2, 1, n) + b(k+1, 2, n, n). The remaining portion for the recurrence is defined in Du 1989.
%e A094392 E.g., for m = 5 and n = 2, b(5,2,2,2)= b(3,2,1,2) + b(4,2,2,2)= 2 because of the definition in the reference.
%e A094392     1   1  1  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392     1   1  1  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392     2   1  1  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392     3   1  1  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392     5   2  1  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392     8   3  1  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392    13   5  2  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392    21   7  3  1  1 1 1 1 1 1 1 1 1 1 1
%e A094392    34  11  5  2  1 1 1 1 1 1 1 1 1 1 1
%e A094392    55  16  7  3  1 1 1 1 1 1 1 1 1 1 1
%e A094392    89  25 11  5  2 1 1 1 1 1 1 1 1 1 1
%e A094392   144  37 15  7  3 1 1 1 1 1 1 1 1 1 1
%e A094392   233  57 23 11  5 2 1 1 1 1 1 1 1 1 1
%e A094392   377  85 32 15  7 3 1 1 1 1 1 1 1 1 1
%e A094392   610 130 49 23 11 5 2 1 1 1 1 1 1 1 1
%p A094392 b := proc(k,i,j,n) option remember; if k = 1 then if i = 1 then return 0; end if; if i = 2 then if j = n then return 1; end if; return 0; end if; end if; if k = 2 then if i = 1 then return 1; end if; if i = 2 then if j = n then return 1; end if; return 0; end if; end if; if j = n then return b(k-2, i, 1, n) + b(k-1, i, n, n); end if; return b(k-2, i, 1, n) + b(k-2, i, j+1, n); end proc; # Chris Deugau (deugaucj(AT)uvic.ca), Dec 19 2005
%t A094392 b[k_, i_, j_, n_] := b[k, i, j, n] = Which[k == 1, Which[i == 1, 0, i == 2 , If[j == n, 1, 0], True, 0], k == 2, Which[i == 1, 1, i == 2, If[j == n, 1, 0], True, 0], j == n, b[k - 2, i, 1, n] + b[k - 1, i, n, n], True, b[k - 2, i, 1, n] + b[k - 2, i, j + 1, n]];
%t A094392 a[m_, n_] := b[m, 2, n, n];
%t A094392 Table[a[m - n + 1, n], {m, 1, 14}, {n, m, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 21 2017, adapted from Maple *)
%Y A094392 Cf. A006206 (A_{n,1}), A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.
%K A094392 nonn,tabl
%O A094392 1,6
%A A094392 Amy Robinson (amylou(AT)mchsi.com), Apr 28 2004
%E A094392 Corrected and extended by Chris Deugau (deugaucj(AT)uvic.ca), Dec 19 2005
%E A094392 Typo 891 -> 89,1 corrected by _Jean-François Alcover_, Nov 21 2017