This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094404 #17 Jun 28 2025 19:28:13 %S A094404 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A094404 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A094404 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A094404 Numerators of low-water marks of mu(n)/n, where mu(n) is A002034. %C A094404 Denominators are A094372 and positions are A094371. %H A094404 J. Sondow and E. W. Weisstein, <a href="https://mathworld.wolfram.com/SmarandacheFunction.html">MathWorld: Smarandache Function</a> %e A094404 1, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 3/40, 1/15, 1/16, ... %t A094404 A002034[1] := 1; A002034[n_] := Max[A002034 @@@ FactorInteger[n]]; A002034[p_, 1] := p; A002034[p_, alpha_] := A002034[p, alpha] = Module[{a, k, r, i, nu, k0 = alpha(p - 1)}, i = nu = Floor[Log[p, 1 + k0]]; a[1] = 1; a[n_] := (p^n - 1)/(p - 1); k[nu] = Quotient[alpha, a[nu]]; r[nu] = alpha - k[nu]a[nu]; While[r[i] > 0, k[i - 1] = Quotient[r[i], a[i - 1]]; r[i - 1] = r[i] - k[i - 1]a[i - 1]; i-- ]; k0 + Plus @@ k /@ Range[i, nu]]; M = {}; a = Infinity; Do[ s = A002034[n]; If[s/n < a, a = s/n; AppendTo[M, a]], {n, 40320}]; Numerator[M] (* _Jonathan Sondow_, Apr 28 2004, revised by _Eric W. Weisstein_, May 17 2004 *) %Y A094404 Cf. A002034, A094371, A094372, A094634. %K A094404 nonn %O A094404 1,8 %A A094404 _Eric W. Weisstein_, Apr 29 2004