This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094420 #31 Jan 12 2024 01:15:58 %S A094420 1,1,10,219,8676,544505,49729758,6232661239,1026912225160, %T A094420 215270320769109,55954905981282210,17662898483917308083, %U A094420 6655958151527584785900,2951503248457748982755953,1521436331153097968932487206,902143190212525713006814917615,609729139653483641913607434550800 %N A094420 Generalized ordered Bell numbers Bo(n,n). %C A094420 Main diagonal of array A094416. %H A094420 Seiichi Manyama, <a href="/A094420/b094420.txt">Table of n, a(n) for n = 0..200</a> %F A094420 a(n) ~ sqrt(2*Pi) * n^(2*n + 5/2) / exp(n - 3/2). - _Vaclav Kotesovec_, Jul 23 2018 %F A094420 a(n) = Sum_{k=0..n} k!*n^k*Stirling2(n, k). - _Seiichi Manyama_, Jun 12 2020 %F A094420 From _Peter Luschny_, May 21 2021: (Start) %F A094420 a(n) = F_{n}(n), the Fubini polynomial F_{n}(x) evaluated at x = n. %F A094420 a(n) = n! * [x^n] (1 / (1 + n * (1 - exp(x)))). (End) %p A094420 F := proc(n) option remember; if n = 0 then return 1 fi; %p A094420 expand(add(binomial(n, k)*F(n-k)*x, k=1..n)) end: %p A094420 a := n -> subs(x = n, F(n)): %p A094420 seq(a(n), n = 0..16); # _Peter Luschny_, May 21 2021 %t A094420 Table[Sum[k!*n^k*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Jul 23 2018 *) %o A094420 (PARI) {a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 2))} \\ _Seiichi Manyama_, Jun 12 2020 %o A094420 (SageMath) %o A094420 def aList(len): %o A094420 R.<x> = PowerSeriesRing(QQ) %o A094420 f = lambda n: R(1/(1 + n * (1 - exp(x)))) %o A094420 return [factorial(n)*f(n).list()[n] for n in (0..len-1)] %o A094420 print(aList(17)) # _Peter Luschny_, May 21 2021 %o A094420 (Magma) %o A094420 A094420:= func< n | (&+[Factorial(k)*n^k*StirlingSecond(n,k): k in [0..n]]) >; %o A094420 [A094420(n): n in [0..25]]; // _G. C. Greubel_, Jan 12 2024 %Y A094420 Cf. A094416, A321189. %Y A094420 The coefficients of the Fubini polynomials are A131689. %Y A094420 Central column of A344499. %K A094420 nonn %O A094420 0,3 %A A094420 _Ralf Stephan_, May 02 2004 %E A094420 More terms from _Seiichi Manyama_, Jun 12 2020