cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094424 Array read by antidiagonals: Solutions to Schmidt's Problem.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 10, 1, 1, 8, 68, 56, 1, 1, 16, 424, 1732, 346, 1, 1, 32, 2576, 48896, 51076, 2252, 1, 1, 64, 15520, 1383568, 6672232, 1657904, 15184, 1, 1, 128, 93248, 39776000, 873960976, 1022309408, 57793316, 104960, 1, 1, 256, 559744, 1159151680, 116758856608, 615833930816, 176808084544, 2117525792, 739162, 1
Offset: 1

Views

Author

Ralf Stephan, May 16 2004

Keywords

Comments

T(r,k) satisfies sum[k=0,n, C(n,k)^r*C(n+k,k)^r] = sum[k=0,n, C(n,k)*C(n+k,k)*T(r,k)] for all n=0,1,2,3...

Examples

			Array begins:
  1,  1,     1,        1,            1,               1, ...
  1,  2,    10,       56,          346,            2252, ...
  1,  4,    68,     1732,        51076,         1657904, ...
  1,  8,   424,    48896,      6672232,      1022309408, ...
  1, 16,  2576,  1383568,    873960976,    615833930816, ...
  1, 32, 15520, 39776000, 116758856608, 371558588978432, ...
		

Crossrefs

Rows 2-5 are A000172, A000658, A092868, A379610.
Columns 2-3 seem to be A000079, A081656.

Programs

  • Mathematica
    eq[r_, n_] := eq[r, n] = Sum[Binomial[n, k]^r*Binomial[n + k, k]^r, {k, 0, n}] == Sum[Binomial[n, k]*Binomial[n + k, k]*t[r, k], {k, 0, n}]; c[r_, k_] := t[r, k] /. Solve[Table[eq[r, n], {n, 0, k}], t[r, k]] // First; lg = 10; m = Table[c[r, k], {r, 1, lg}, {k, 0, lg - 1}];
    Flatten[ Table[ Reverse @ Diagonal[ Reverse /@ m, k],{k, lg - 1, -lg + 1, -1}]][[1 ;; 55]] (* Jean-François Alcover, Jul 20 2011 *)
  • PARI
    A094424row(r,kmax)={ local(nmat,rhs,cv) ; nmat=matrix(kmax+1,kmax+1) ; rhs=matrix(kmax+1,1) ; for(n=0,kmax, for(k=0,kmax, nmat[n+1,k+1]=binomial(n,k)*binomial(n+k,k) ; ) ; rhs[n+1,1]=sum(i=0,n,binomial(n,i)^r*binomial(n+i,i)^r) ; ) ; cv=matsolve(nmat,rhs) ; } A094424(nmax)={ local(T,c) ; T=matrix(nmax,nmax) ; for(r=1,nmax, c=A094424row(r,nmax-1) ; for(i=1,nmax, T[r,i]=c[i,1] ; ) ; ) ; return(T) ; } { rmax=10 ; T=A094424(rmax) ; for(d=0,rmax-1, for(c=0,d, print1(T[d-c+1,c+1],",") ; ) ; ) ; } \\ R. J. Mathar, Oct 06 2006

Formula

Zudilin gives a complicated general formula involving binomial coefficients, thus proving that all T(r, k) are integers.

Extensions

More terms from R. J. Mathar, Oct 06 2006