This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094435 #11 Sep 08 2022 08:45:13 %S A094435 1,2,1,3,3,2,4,6,8,3,5,10,20,15,5,6,15,40,45,30,8,7,21,70,105,105,56, %T A094435 13,8,28,112,210,280,224,104,21,9,36,168,378,630,672,468,189,34,10,45, %U A094435 240,630,1260,1680,1560,945,340,55,11,55,330,990,2310,3696,4290,3465,1870,605,89 %N A094435 Triangular array read by rows: T(n,k) = Fibonacci(k)*C(n,k), k = 1...n; n>=1. %C A094435 Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n) and n-th alternating row sum is F(n). %H A094435 G. C. Greubel, <a href="/A094435/b094435.txt">Rows n = 1..100 of triangle, flattened</a> %F A094435 From _G. C. Greubel_, Oct 30 2019: (Start) %F A094435 T(n, k) = binomial(n, k)*Fibonacci(k). %F A094435 Sum_{k=1..n} binomial(n,k)*Fibonacci(k) = Fibonacci(2*n). %F A094435 Sum_{k=1..n} (-1)^(k-1)*binomial(n,k)*Fibonacci(k) = Fibonacci(n). (End) %e A094435 First few rows: %e A094435 1; %e A094435 2 1; %e A094435 3 3 2; %e A094435 4 6 8 3; %e A094435 5, 10, 20, 15, 5; %e A094435 6, 15, 40, 45, 30, 8; %p A094435 with(combinat); seq(seq(binomial(n,k)*fibonacci(k), k=1..n), n=1..12); # _G. C. Greubel_, Oct 30 2019 %t A094435 Table[Fibonacci[k]*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* _G. C. Greubel_, Oct 30 2019 *) %o A094435 (PARI) T(n,k) = binomial(n,k)*fibonacci(k); %o A094435 for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Oct 30 2019 %o A094435 (Magma) [Binomial(n,k)*Fibonacci(k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Oct 30 2019 %o A094435 (Sage) [[binomial(n,k)*fibonacci(k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Oct 30 2019 %o A094435 (GAP) Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k)*Fibonacci(k) ))); # _G. C. Greubel_, Oct 30 2019 %Y A094435 Cf. A000045. %Y A094435 Cf. A094436, A094437, A094438, A094439, A094440, A094441, A094442, A094443, A094444. %K A094435 nonn,tabl %O A094435 1,2 %A A094435 _Clark Kimberling_, May 03 2004