cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094447 Numbers which are the sum of two positive cubes and divisible by 13.

This page as a plain text file.
%I A094447 #11 Jun 13 2020 02:39:48
%S A094447 65,91,351,468,520,559,637,728,793,1001,1027,1339,1456,1547,1729,1755,
%T A094447 2457,2808,3718,3744,3887,4160,4394,4472,4706,4914,4940,5096,5642,
%U A094447 5824,6175,6344,7163,7202,7371,7657,8008,8125,8190,8216,9009
%N A094447 Numbers which are the sum of two positive cubes and divisible by 13.
%H A094447 Vincenzo Librandi, <a href="/A094447/b094447.txt">Table of n, a(n) for n = 1..1000</a>
%e A094447 Sums not divisible by 13 are shown in asterisks:
%e A094447 ....|...1....8...27...64...125...216...343...512...729..1000..1331
%e A094447 ------------------------------------------------------------------
%e A094447 1...|...*....*....*...65.....*.....*.....*.....*.....*..1001.....*
%e A094447 8...|...*....*....*....*.....*.....*...351...520.....*.....*..1339
%e A094447 27..|...*....*....*...91.....*.....*.....*.....*.....*..1027.....*
%e A094447 64..|..65....*...91....*.....*.....*.....*.....*...793.....*.....*
%e A094447 125.|...*....*....*....*.....*.....*...468...637.....*.....*..1456
%e A094447 216.|...*....*....*....*.....*.....*...559...728.....*.....*..1547
%e A094447 343.|...*..351....*....*...468...559.....*.....*.....*.....*.....*
%e A094447 512.|...*..520....*....*...637...728.....*.....*.....*.....*.....*
%e A094447 729.|...*....*....*..793.....*.....*.....*.....*.....*..1729.....*
%e A094447 1000|1001....*.1027....*.....*.....*.....*.....*..1729.....*.....*
%e A094447 1331|...*.1339....*....*..1456..1547.....*.....*.....*.....*.....*
%t A094447 upto[n_] := Block[{t}, Union@ Reap[ Do[If[Mod[t = x^3 + y^3, 13] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[10^4] (* _Giovanni Resta_, Jun 12 2020 *)
%K A094447 nonn,easy
%O A094447 1,1
%A A094447 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jun 09 2004
%E A094447 Definition corrected by _Robert Israel_, Jun 12 2020