This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094447 #11 Jun 13 2020 02:39:48 %S A094447 65,91,351,468,520,559,637,728,793,1001,1027,1339,1456,1547,1729,1755, %T A094447 2457,2808,3718,3744,3887,4160,4394,4472,4706,4914,4940,5096,5642, %U A094447 5824,6175,6344,7163,7202,7371,7657,8008,8125,8190,8216,9009 %N A094447 Numbers which are the sum of two positive cubes and divisible by 13. %H A094447 Vincenzo Librandi, <a href="/A094447/b094447.txt">Table of n, a(n) for n = 1..1000</a> %e A094447 Sums not divisible by 13 are shown in asterisks: %e A094447 ....|...1....8...27...64...125...216...343...512...729..1000..1331 %e A094447 ------------------------------------------------------------------ %e A094447 1...|...*....*....*...65.....*.....*.....*.....*.....*..1001.....* %e A094447 8...|...*....*....*....*.....*.....*...351...520.....*.....*..1339 %e A094447 27..|...*....*....*...91.....*.....*.....*.....*.....*..1027.....* %e A094447 64..|..65....*...91....*.....*.....*.....*.....*...793.....*.....* %e A094447 125.|...*....*....*....*.....*.....*...468...637.....*.....*..1456 %e A094447 216.|...*....*....*....*.....*.....*...559...728.....*.....*..1547 %e A094447 343.|...*..351....*....*...468...559.....*.....*.....*.....*.....* %e A094447 512.|...*..520....*....*...637...728.....*.....*.....*.....*.....* %e A094447 729.|...*....*....*..793.....*.....*.....*.....*.....*..1729.....* %e A094447 1000|1001....*.1027....*.....*.....*.....*.....*..1729.....*.....* %e A094447 1331|...*.1339....*....*..1456..1547.....*.....*.....*.....*.....* %t A094447 upto[n_] := Block[{t}, Union@ Reap[ Do[If[Mod[t = x^3 + y^3, 13] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[10^4] (* _Giovanni Resta_, Jun 12 2020 *) %K A094447 nonn,easy %O A094447 1,1 %A A094447 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jun 09 2004 %E A094447 Definition corrected by _Robert Israel_, Jun 12 2020