A094449 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having sum of pyramid heights equal to k.
1, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 2, 0, 0, 8, 13, 8, 5, 0, 0, 16, 42, 26, 20, 12, 0, 0, 32, 139, 85, 65, 48, 28, 0, 0, 64, 470, 286, 214, 156, 112, 64, 0, 0, 128, 1616, 982, 727, 517, 364, 256, 144, 0, 0, 256, 5632, 3420, 2518, 1772, 1214, 832, 576, 320, 0, 0, 512, 19852
Offset: 0
Examples
T(3,3)=4 because there are four Dyck paths of semilength 3 having 3 as sum of pyramid heights: (UD)(UUDD),(UUDD)(UD),(UD)(UD)(UD) and (UUUDDD) (the pyramids are shown between parentheses). Triangle begins: [1]; [0, 1]; [0, 0, 2]; [1, 0, 0, 4]; [4, 2, 0, 0, 8]; [13, 8, 5, 0, 0, 16]; [42, 26, 20, 12, 0, 0, 32];
Programs
-
Maple
C:=(1-sqrt(1-4*z))/2/z: G:=(1-t*z)*(1-z)/(1-2*t*z+t*z^2-z*C*(1-z)*(1-t*z)): Gserz:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(Gserz,z^n)) od: seq([subs(t=0,P[n]),seq(coeff(P[n],t^k),k=1..n)],n=0..14);
Formula
G.f.: G(t, z) = (1-t*z)*(1-z)/(1-2*t*z+t*z^2-z*(1-z)*(1-t*z)*C), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
Comments