This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094485 #14 Jul 25 2024 12:21:21 %S A094485 -1,2,-2,-6,9,-3,24,-44,24,-4,-120,250,-175,50,-5,720,-1644,1350,-510, %T A094485 90,-6,-5040,12348,-11368,5145,-1225,147,-7,40320,-104544,105056, %U A094485 -54152,15680,-2576,224,-8,-362880,986256,-1063116,605556,-202041,40824,-4914,324,-9,3628800,-10265760,11727000,-7236800 %N A094485 T(n, k) = Stirling1(n+1, k) - Stirling1(n, k-1), for 1 <= k <= n. Triangle read by rows. %F A094485 E.g.f.: -x*y*(1+y)^(x-1). [T(n,k) = n!*[x^k]([y^n] -x*y*(y+1)^(x-1)).] %F A094485 The matrix inverse of the Worpitzky triangle. More precisely: %F A094485 T(n, k) = -n!*InvW(n, k) where InvW is the matrix inverse of A028246. - _Peter Luschny_, May 26 2020 %e A094485 Triangle starts: %e A094485 [n\k 1 2 3 4 5 6 7 8] %e A094485 [1] -1; %e A094485 [2] 2, -2; %e A094485 [3] -6, 9, -3; %e A094485 [4] 24, -44, 24, -4; %e A094485 [5] -120, 250, -175, 50, -5; %e A094485 [6] 720, -1644, 1350, -510, 90, -6; %e A094485 [7] -5040, 12348, -11368, 5145, -1225, 147, -7; %e A094485 [8] 40320, -104544, 105056, -54152, 15680, -2576, 224, -8; %p A094485 T := (n, k) -> Stirling1(n+1, k) - Stirling1(n, k-1); %p A094485 seq(seq(T(n, k), k=1..n), n=1..9); # _Peter Luschny_, May 26 2020 %t A094485 Table[StirlingS1[n+1,k]-StirlingS1[n,k-1],{n,10},{k,n}]//Flatten (* _Harvey P. Dale_, Jul 25 2024 *) %Y A094485 Cf. A019538, A028246, A163626. %Y A094485 Cf. A000142, A052881. %K A094485 easy,sign,tabl %O A094485 1,2 %A A094485 _Vladeta Jovovic_, Jun 05 2004 %E A094485 Offset of k shifted and edited by _Peter Luschny_, May 26 2020