This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094491 #7 Oct 15 2013 22:32:24 %S A094491 223,2104547,2403689,4268233,17620457,21848647,23487311,29205821, %T A094491 42889591,43458859,47899487,48309017,54666847,61227457,73038689, %U A094491 81742547,83574457,85031153,87285403,95017003,100339517,103136867 %N A094491 Primes p such that 2^j+p^j are primes for j=0,4,8,128. %C A094491 Primes of 2^j+p^j form are a generalization of Fermat-primes. This is strongly supported by the observation that corresponding j-exponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473-A094490. %e A094491 For j=0 1+1=2 is prime; other conditions are: because of p^4+16==prime; 3rd and 4th conditions are as follows: prime=p^8+256 and prime=2^128+p^128. %t A094491 {ta=Table[0, {100}], u=1}; Do[s0=2;s4=16+Prime[j]^4;s8=256+Prime[j]^8;s128=2^128+Prime[j]^128 If[PrimeQ[s0]&&PrimeQ[s4]&&PrimeQ[s8]&&PrimeQ[s128], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}] %Y A094491 Cf. A082101, A094473-A094490. %K A094491 nonn %O A094491 1,1 %A A094491 _Labos Elemer_, Jun 01 2004 %E A094491 a(5)-a(22) from _Donovan Johnson_, Oct 12 2008