cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094497 Triangular table A(n,j) = C(n,j) - C(n,j) mod n^3, difference of binomial coefficient and its residue mod n^3, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2744, 2744, 2744, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3375, 3375, 3375, 3375, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096, 4096, 8192, 12288, 8192, 4096, 4096
Offset: 0

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Comments

a(0) = 1 by convention.

Examples

			Out of a(1)=1 and a(2)=1, the first deviation from A007318 is at a(111) because C(14,6) = 3003, 3003 mod 2744 = 259, a(111) = 2744.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Table[Binomial[n, j]-Mod[Binomial[n, j], n^3], {j, 0, n}], {n, 1, 14}], 1]