cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094498 Least prime factor of 2^(4*n) + 3^(4*n) = 16^n + 81^n.

This page as a plain text file.
%I A094498 #18 Oct 15 2019 17:24:04
%S A094498 97,17,97,3041,41,17,97,1153,97,17,89,193,97,17,41,769,97,17,97,3041,
%T A094498 97,17,97,1153,41,17,97,3041,97,17,97,257,89,17,41,193,97,17,97,1153,
%U A094498 97,17,97,353,41,17,97,769,97,17
%N A094498 Least prime factor of 2^(4*n) + 3^(4*n) = 16^n + 81^n.
%H A094498 Chai Wah Wu, <a href="/A094498/b094498.txt">Table of n, a(n) for n = 1..255</a>
%t A094498 mif[x_]:=Part[Flatten[FactorInteger[x]], 1] Table[mif[16^w+81^w], {w, 1, 20}]
%t A094498 Table[FactorInteger[16^n+81^n][[1,1]],{n,50}] (* _Harvey P. Dale_, Jun 02 2014 *)
%o A094498 (PARI) a(n) = vecmin(factor(16^n + 81^n)[,1]); \\ _Michel Marcus_, Oct 15 2019
%Y A094498 Cf. A082101, A094474-A094494.
%K A094498 nonn
%O A094498 1,1
%A A094498 _Labos Elemer_, Jun 02 2004
%E A094498 More terms from _Harvey P. Dale_, Jun 02 2014
%E A094498 Name corrected by _Chai Wah Wu_, Oct 14 2019