A094504 T(n,m) equals number of solid partitions of n containing m plane partitions.
1, 3, 1, 6, 3, 1, 13, 9, 3, 1, 24, 22, 9, 3, 1, 48, 54, 25, 9, 3, 1, 86, 120, 63, 25, 9, 3, 1, 160, 267, 153, 66, 25, 9, 3, 1, 282, 559, 357, 162, 66, 25, 9, 3, 1, 500, 1158, 805, 390, 165, 66, 25, 9, 3, 1, 859, 2314, 1761, 898, 399, 165, 66, 25, 9, 3, 1, 1479, 4559, 3761, 2025, 931, 402, 165, 66, 25, 9, 3, 1
Offset: 1
Examples
T(5,3) = 9 since these 9 solid partitions are [{{3}},{{1}},{{1}}], [{{2,1}},{{1}},{{1}}], [{{1,1,1}},{{1}},{{1}}], [{{2},{1}},{{1}},{{1}}], [{{1,1},{1}},{{1}},{{1}}], [{{1},{1},{1}},{{1}},{{1}}], [{{2}},{{2}},{{1}}], [{{1,1}},{{1,1}},{{1}}], [{{1},{1}},{{1},{1}},{{1}}]. Triangle begins: 1; 3, 1; 6, 3, 1; 13, 9, 3, 1; 24, 22, 9, 3, 1; 48, 54, 25, 9, 3, 1; ...
Links
- Wouter Meeussen, Table of n, a(n) for n = 1..136 (16 rows)
- Wouter Meeussen, Mma functions for plane and solid partitions
- Wouter Meeussen, Mma functions for plane and solid partitions
Programs
Formula
Finding a G.f. for the solid partitions is an open problem.
Extensions
Renewed linked Mma program file.Wouter Meeussen, Feb 20 2025
Comments