cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094520 Numbers such that all sums of two distinct divisors are not divisors.

This page as a plain text file.
%I A094520 #16 Apr 20 2025 02:36:11
%S A094520 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,28,29,31,
%T A094520 32,33,34,35,37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61,
%U A094520 62,63,64,65,67,68,69,71,73,74,75,76,77,79,81,82,83,85,86,87,88,89,91
%N A094520 Numbers such that all sums of two distinct divisors are not divisors.
%C A094520 The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 9, 78, 770, 7683, 76799, 767791, 7677080, 76767834, 767667691, 7676629816, ... . Apparently, the asymptotic density of this sequence exists and equals 0.76766... . - _Amiram Eldar_, Apr 20 2025
%H A094520 Amiram Eldar, <a href="/A094520/b094520.txt">Table of n, a(n) for n = 1..10000</a>
%H A094520 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sum-FreeSet.html">Sum-Free Set</a>.
%F A094520 A094518(a(n)) = 0.
%t A094520 aQ[n_] := AllTrue[Total /@ Subsets[Divisors[n], {2}], ! Divisible[n, #] &]; Select[Range[91], aQ] (* _Amiram Eldar_, Aug 31 2019 *)
%o A094520 (PARI) isok(k) = {my(d = divisors(k)); for(i = 1, #d, for(j = 1, i-1, if(!(k % (d[i] + d[j])), return(0)))); 1;} \\ _Amiram Eldar_, Apr 20 2025
%Y A094520 Cf. A094518.
%Y A094520 Complement of A094519.
%K A094520 nonn
%O A094520 1,2
%A A094520 _Reinhard Zumkeller_, May 06 2004