This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094573 #20 Jul 11 2024 10:17:24 %S A094573 1,1,1,3,1,1,12,20,7,1,39,169,186,59,3,1,120,1160,2755,2243,661,55,1, %T A094573 363,7381,33270,52060,33604,9167,910,15,1,1092,45500,367087,988750, %U A094573 1126874,601262,151726,16401,525,1,3279,276529,3873786,17005149 %N A094573 Triangle T(n,k) giving number of (<=2)-covers of an n-set with k blocks. %C A094573 Cover of a set is (<=2)-cover if every element of the set is covered with at most two blocks of the cover. %F A094573 E.g.f.: exp(-x-x^2/2*(exp(y)-1))*(Sum_{n>=0} exp(y*binomial(n+1, 2))*x^n/n!). %e A094573 Triangle T(n,k) begins: %e A094573 1; %e A094573 1; %e A094573 1, 3, 1; %e A094573 1, 12, 20, 7; %e A094573 1, 39, 169, 186, 59, 3; %e A094573 1, 120, 1160, 2755, 2243, 661, 55; %e A094573 ... %t A094573 rows = 9; m = rows + 2; %t A094573 egf = Exp[-x - (x^2/2)*(Exp[y]-1)]*Sum[Exp[y*Binomial[n+1, 2]]*(x^n/n!), {n, 0, m}]; %t A094573 cc = CoefficientList[# + O[x]^m, x]& /@ CoefficientList[egf + O[y]^m, y]; %t A094573 (Range[0, Length[cc]-1]! * cc)[[1 ;; rows]] /. {0, a__} :> {a} // Flatten (* _Jean-François Alcover_, May 13 2019 *) %Y A094573 Row sums give A094574. %Y A094573 Cf. A059443, A060052. %K A094573 nonn,tabf %O A094573 0,4 %A A094573 Goran Kilibarda, _Vladeta Jovovic_, May 12 2004