This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094574 #29 Jul 21 2021 17:10:44 %S A094574 1,1,5,40,457,6995,136771,3299218,95668354,3268445951,129468914524, %T A094574 5868774803537,301122189141524,17327463910351045,1109375488487304027, %U A094574 78484513540137938209,6098627708074641312182,517736625823888411991202,47791900951140948275632148 %N A094574 Number of (<=2)-covers of an n-set. %C A094574 Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - _Gus Wiseman_, Jul 18 2018 %H A094574 Alois P. Heinz, <a href="/A094574/b094574.txt">Table of n, a(n) for n = 0..300</a> %F A094574 Row sums of A094573. %F A094574 E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity). %e A094574 From _Gus Wiseman_, Sep 02 2019: (Start) %e A094574 These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are: %e A094574 {123} {1}{23} {1}{2}{3} {1}{2}{3}{12} %e A094574 {2}{13} {1}{2}{13} {1}{2}{3}{13} %e A094574 {3}{12} {1}{2}{23} {1}{2}{3}{23} %e A094574 {1}{123} {1}{3}{12} {1}{2}{13}{23} %e A094574 {12}{13} {1}{3}{23} {1}{2}{3}{123} %e A094574 {12}{23} {2}{3}{12} {1}{3}{12}{23} %e A094574 {13}{23} {2}{3}{13} {2}{3}{12}{13} %e A094574 {2}{123} {1}{12}{23} %e A094574 {3}{123} {1}{13}{23} %e A094574 {12}{123} {1}{2}{123} %e A094574 {13}{123} {1}{3}{123} %e A094574 {23}{123} {2}{12}{13} %e A094574 {2}{13}{23} %e A094574 {2}{3}{123} %e A094574 {3}{12}{13} %e A094574 {3}{12}{23} %e A094574 {12}{13}{23} %e A094574 {1}{23}{123} %e A094574 {2}{13}{123} %e A094574 {3}{12}{123} %e A094574 (End) %t A094574 facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A094574 Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* _Gus Wiseman_, Jul 18 2018 *) %t A094574 m = 20; %t A094574 a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}]; %t A094574 egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m; %t A094574 CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* _Jean-François Alcover_, May 13 2019 *) %Y A094574 Row n=2 of A219585. - _Alois P. Heinz_, Nov 23 2012 %Y A094574 Dominated by A003465. %Y A094574 Graphs with vertex-degrees <= 2 are A136281. %Y A094574 Cf. A002718, A007716, A020554, A020555, A050535, A094574, A136284, A316974, A327104, A327106, A327229. %Y A094574 Main diagonal of A346517. %K A094574 nonn %O A094574 0,3 %A A094574 Goran Kilibarda, _Vladeta Jovovic_, May 12 2004