cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094587 Triangle of permutation coefficients arranged with 1's on the diagonal. Also, triangle of permutations on n letters with exactly k+1 cycles and with the first k+1 letters in separate cycles.

This page as a plain text file.
%I A094587 #243 Jul 27 2022 03:04:25
%S A094587 1,1,1,2,2,1,6,6,3,1,24,24,12,4,1,120,120,60,20,5,1,720,720,360,120,
%T A094587 30,6,1,5040,5040,2520,840,210,42,7,1,40320,40320,20160,6720,1680,336,
%U A094587 56,8,1,362880,362880,181440,60480,15120,3024,504,72,9,1,3628800,3628800
%N A094587 Triangle of permutation coefficients arranged with 1's on the diagonal. Also, triangle of permutations on n letters with exactly k+1 cycles and with the first k+1 letters in separate cycles.
%C A094587 Also, table of Pochhammer sequences read by antidiagonals (see Rudolph-Lilith, 2015). - _N. J. A. Sloane_, Mar 31 2016
%C A094587 Reverse of A008279. Row sums are A000522. Diagonal sums are A003470. Rows of inverse matrix begin {1}, {-1,1}, {0,-2,1}, {0,0,-3,1}, {0,0,0,-4,1} ... The signed lower triangular matrix (-1)^(n+k)n!/k! has as row sums the signed rencontres numbers Sum_{k=0..n} (-1)^(n+k)n!/k!. (See A000166). It has matrix inverse 1 1,1 0,2,1 0,0,3,1 0,0,0,4,1,...
%C A094587 Exponential Riordan array [1/(1-x),x]; column k has e.g.f. x^k/(1-x). - _Paul Barry_, Mar 27 2007
%C A094587 From _Tom Copeland_, Nov 01 2007: (Start)
%C A094587 T is the umbral extension of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! * Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j) * j! * x^(n-j) = Sum_{j=0..n} (n!/j!) x^j. The inverse operator is A132013 with generalizations discussed in A132014.
%C A094587 b = T*a can be characterized several ways in terms of a(n) and b(n) or their o.g.f.'s A(x) and B(x).
%C A094587 1) b(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0], umbrally,
%C A094587 2) b(n) = (-1)^n n! Lag(n,a(.),-1-n)
%C A094587 3) b(n) = Sum_{j=0..n} (n!/j!) a(j)
%C A094587 4) B(x) = (1-xDx)^(-1) A(x), formally
%C A094587 5) B(x) = Sum_{j=0,1,...} (xDx)^j A(x)
%C A094587 6) B(x) = Sum_{j=0,1,...} x^j * D^j * x^j A(x)
%C A094587 7) B(x) = Sum_{j=0,1,...} j! * x^j * L(j,-:xD:,0) A(x) where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the operator series at the j = n term gives an o.g.f. for b(0) through b(n).
%C A094587 c = (0!,1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and the associated operations described in A133314 so T(n,k) = binomial(n,k)*c(n-k). The reciprocal sequence is d = (1,-1,0,0,0,...). (End)
%C A094587 From _Peter Bala_, Jul 10 2008: (Start)
%C A094587 This array is the particular case P(1,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
%C A094587 n\k|0.....................1...............2.......3......4
%C A094587 ----------------------------------------------------------
%C A094587 0..|1.....................................................
%C A094587 1..|a....................1................................
%C A094587 2..|a(a+b)...............2a..............1................
%C A094587 3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
%C A094587 4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
%C A094587 ...
%C A094587 The entries A(n,k) of this array satisfy the recursion A(n,k) = (a+b*(n-k-1))*A(n-1,k) + A(n-1,k-1), which reduces to the Pascal formula when a = 1, b = 0.
%C A094587 Various cases are recorded in the database, including: P(1,0) = Pascal's triangle A007318, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159, P(1,3) = A136215 and P(2,3) = A136216.
%C A094587 When b <> 0 the array P(a,b) has e.g.f. exp(x*y)/(1-b*y)^(a/b) = 1 + (a+x)*y + (a*(a+b)+2a*x+x^2)*y^2/2! + (a*(a+b)*(a+2b) + 3a*(a+b)*x + 3a*x^2+x^3)*y^3/3! + ...; the array P(a,0) has e.g.f. exp((x+a)*y).
%C A094587 We have the matrix identities P(a,b)*P(a',b) = P(a+a',b); P(a,b)^-1 = P(-a,b).
%C A094587 An analog of the binomial expansion for the row entries of P(a,b) has been proved by [Echi]. Introduce a (generally noncommutative and nonassociative) product ** on the ring of polynomials in two variables by defining F(x,y)**G(x,y) = F(x,y)G(x,y) + by^2*d/dy(G(x,y)).
%C A094587 Define the iterated product F^(n)(x,y) of a polynomial F(x,y) by setting F^(1) = F(x,y) and F^(n)(x,y) = F(x,y)**F^(n-1)(x,y) for n >= 2. Then (x+a*y)^(n) = x^n + C(n,1)*a*x^(n-1)*y + C(n,2)*a*(a+b)*x^(n-2)*y^2 + ... + C(n,n)*a*(a+b)*(a+2b)*...*(a+(n-1)b)*y^n. (End)
%C A094587 (n+1) * n-th row = reversal of triangle A068424: (1; 2,2; 6,6,3; ...) - _Gary W. Adamson_, May 03 2009
%C A094587 Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n,k,p) = G(n-1,n-k,p) then T(n, k, 1) is this sequence, T(n, k, 2) = A112292(n, k) and T(n, k, 3) = A136214. - _Peter Luschny_, Jun 01 2009, revised Jun 18 2019
%C A094587 The higher order exponential integrals E(x,m,n) are defined in A163931. For a discussion of the asymptotic expansions of the E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) see A130534. The asymptotic expansion of E(x,m=1,n) leads for n >= 1 to the left hand columns of the triangle given above. Triangle A165674 is generated by the asymptotic expansions of E(x,m=2,n). - _Johannes W. Meijer_, Oct 07 2009
%C A094587 T(n,k) = n!/k! = number of permutations of [n+1] with exactly k+1 cycles and with elements 1,2,...,k+1 in separate cycles. See link and example below. - _Dennis P. Walsh_, Jan 24 2011
%C A094587 T(n,k) is the number of n permutations that leave some size k subset of {1,2,...,n} fixed. Sum_{k=0..n}(-1)^k*T(n,k) = A000166(n) (the derangements). - _Geoffrey Critzer_, Dec 11 2011
%C A094587 T(n,k) = A162995(n-1,k-1), 2 <= k <= n; T(n,k) = A173333(n,k), 1 <= k <= n. - _Reinhard Zumkeller_, Jul 05 2012
%C A094587 The row polynomials form an Appell sequence. The matrix is a special case of a group of general matrices sketched in A132382. - _Tom Copeland_, Dec 03 2013
%C A094587 For interpretations in terms of colored necklaces, see A213936 and A173333. - _Tom Copeland_, Aug 18 2016
%C A094587 See A008279 for a relation of this entry to the e.g.f.s enumerating the faces of permutahedra and stellahedra. - _Tom Copeland_, Nov 14 2016
%C A094587 Also, T(n,k) is the number of ways to arrange n-k nonattacking rooks on the n X (n-k) chessboard. - _Andrey Zabolotskiy_, Dec 16 2016
%C A094587 The infinitesimal generator of this triangle is the generalized exponential Riordan array [-log(1-x), x] and equals the unsigned version of A238363. - _Peter Bala_, Feb 13 2017
%C A094587 Formulas for exponential and power series infinitesimal generators for this triangle T are given in Copeland's 2012 and 2014 formulas as T = unsigned exp[(I-A238385)] =  1/(I - A132440), where I is the identity matrix. - _Tom Copeland_, Jul 03 2017
%C A094587 If A(0) = 1/(1-x), and A(n) = d/dx(A(n-1)), then A(n) = n!/(1-x)^(n+1) = Sum_{k>=0} (n+k)!/k!*x^k = Sum_{k>=0} T(n+k, k)*x^k. - _Michael Somos_, Sep 19 2021
%H A094587 Reinhard Zumkeller, <a href="/A094587/b094587.txt">Rows n = 0..149 of triangle, flattened</a>
%H A094587 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013.
%H A094587 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry3/barry100r.html">The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms</a>, J. Int. Seq. 13 (2010) # 10.8.4, example 3.
%H A094587 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry4/barry122.html">Exponential Riordan Arrays and Permutation Enumeration</a>, J. Int. Seq. 13 (2010) # 10.9.1, example 5.
%H A094587 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry1/barry97r2.html">Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms</a>, J. Int. Seq. 14 (2011) # 11.2.2, example 17.
%H A094587 Paul Barry, <a href="http://arxiv.org/abs/1105.3044">Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays</a>, arXiv:1105.3044 [math.CO], 2011, also <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry5/barry112.html">J. Int. Seq. 14 (2011)  11.6.7</a>.
%H A094587 Paul Barry, <a href="https://arxiv.org/abs/1804.06801">A note on number triangles that are almost their own production matrix</a>, arXiv:1804.06801 [math.CO], 2018.
%H A094587 Paul Barry, <a href="https://arxiv.org/abs/2101.06713">On the inversion of Riordan arrays</a>, arXiv:2101.06713 [math.CO], 2021.
%H A094587 Tom Copeland, <a href="http://tcjpn.wordpress.com/2014/08/03/goin-with-the-flow-logarithm-of-the-derivative/">Goin' with the Flow: Logarithm of the Derivative Operator</a> Part V, 2014.
%H A094587 T. Copeland, <a href="https://tcjpn.wordpress.com/2016/11/06/compositional-inverse-operators-and-sheffer-sequences/">Compositional inverse operators and Sheffer sequences</a>, 2016.
%H A094587 E. Deutsch, L. Ferrari and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.aam.2004.05.002">Production Matrices</a>, Advances in Mathematics, 34 (2005) pp. 101-122.
%H A094587 Othman Echi, <a href="http://www.academicjournals.org/article/article1380188236_Echi.pdf">Binomial coefficients and Nasir al-Din al-Tusi</a>, Scientific Research and Essays Vol.1 (2), 28-32 November 2006.
%H A094587 H. W. Gould, ed. J. Quaintance, <a href="http://www.math.wvu.edu/~gould/Vol.4.PDF">Combinatorial Identities</a>, May 2010 (eqn. 10.35, p.49).
%H A094587 A. Hennessy and P. Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry6/barry161.html">Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials</a>, J. Int. Seq. 14 (2011) # 11.8.2.
%H A094587 Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3.
%H A094587 Peter Luschny, <a href="http://www.luschny.de/math/seq/variations.html">Variants of Variations</a>.
%H A094587 Michelle Rudolph-Lilith, <a href="http://arxiv.org/abs/1508.07894">On the Product Representation of Number Sequences, with Application to the Fibonacci Family</a>, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
%H A094587 M. Z. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Spivey/spivey31.html">On Solutions to a General Combinatorial Recurrence</a>, J. Int. Seq. 14 (2011) # 11.9.7.
%H A094587 Dennis Walsh, <a href="http://frank.mtsu.edu/~dwalsh/PERMCYC1.pdf">A note on permutations with cyclic constraints</a>
%H A094587 Wikipedia, <a href="http://en.wikipedia.org/wiki/Sheffer_sequence">Sheffer sequence</a>
%F A094587 T(n, k) = n!/k! if n >= k >= 0, otherwise 0.
%F A094587 T(n, k) = Sum_{i=k..n} |S1(n+1, i+1)*S2(i, k)| * (-1)^i, with S1, S2 the Stirling numbers.
%F A094587 T(n,k) = (n-k)*T(n-1,k) + T(n-1,k-1). E.g.f.: exp(x*y)/(1-y) = 1 + (1+x)*y + (2+2*x+x^2)*y^2/2! + (6+6*x+3*x^2+x^3)*y^3/3!+ ... . - _Peter Bala_, Jul 10 2008
%F A094587 A094587 = 1 / ((-1)*A129184 * A127648 + I), I = Identity matrix. - _Gary W. Adamson_, May 03 2009
%F A094587 From _Johannes W. Meijer_, Oct 07 2009: (Start)
%F A094587 The o.g.f. of right hand column k is Gf(z;k) = (k-1)!/(1-z)^k, k => 1.
%F A094587 The recurrence relations of the right hand columns lead to Pascal's triangle A007318. (End)
%F A094587 Let f(x) = (1/x)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+1)*R(n,x)-x*R'(n,x). Cf. A132159. - _Peter Bala_, Oct 28 2011
%F A094587 A padded shifted version of this lower triangular matrix with zeros in the first column and row except for a one in the diagonal position is given by integral(t=0 to t=infinity) exp[-t(I-P)] = 1/(I-P) = I + P^2 + P^3 + ... where P is the infinitesimal generator matrix A218234 and I the identity matrix. The non-padded version is given by P replaced by A132440. - _Tom Copeland_, Oct 25 2012
%F A094587 From _Peter Bala_, Aug 28 2013: (Start)
%F A094587 The row polynomials R(n,x) form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x).
%F A094587 Let P(n,x) = Product_{k=0..n-1} (x + k) denote the rising factorial polynomial sequence with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (6, 6, 3, 1) so P(3,x + 1) = (x + 1)*(x + 2)*(x + 3) = 6 + 6*x + 3*x*(x + 1) + x*(x + 1)*(x + 2). (End)
%F A094587 From _Tom Copeland_, Apr 21 & 26, and Aug 13 2014: (Start)
%F A094587 T-I = M = -A021009*A132440*A021009 with e.g.f. y*exp(x*y)/(1-y). Cf. A132440. Dividing the n-th row of M by n generates the (n-1)th row of T.
%F A094587 T = 1/(I - A132440) = {2*I - exp[(A238385-I)]}^(-1) = unsigned exp[(I-A238385)] = exp[A000670(.)*(A238385-I)] = , umbrally, where I = identity matrix.
%F A094587 The e.g.f. is exp(x*y)/(1-y), so the row polynomials form an Appell sequence with lowering operator d/dx and raising operator x + 1/(1-D).
%F A094587 With L(n,m,x)= Laguerre polynomials of order m, the row polynomials are (-1)^n*n!*L(n,-1-n,x) = (-1)^n*(-1!/(-1-n)!)*K(-n,-1-n+1,x) = n!* K(-n,-n,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
%F A094587 Operationally, (-1)^n*n!*L(n,-1-n,-:xD:) = (-1)^n*x^(n+1)*:Dx:^n*x^(-1-n) = (-1)^n*x*:xD:^n*x^(-1) = (-1)^n*n!*binomial(xD-1,n) = n!*K(-n,-n,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706 and A132159.
%F A094587 The n-th row of signed M has the coefficients of d[(-:xD:)^n]/d(:Dx:)= f[d/d(-:xD:)](-:xD:)^n with f(y)=y/(y-1), :Dx:^n= n!L(n,0,-:xD:), and (-:xD:)^n = n!L(n,0,:Dx:). M has the coefficients of [D/(1-D)]x^n. (End)
%F A094587 From _Tom Copeland_, Nov 18 2015: (Start)
%F A094587 Coefficients of the row polynomials of the e.g.f. Sum_{n>=0} P_n(b1,b2,..,bn;t) x^n/n! = e^(P.(..;t) x) = e^(xt) / (1-b.x) = (1 + b1 x + b2 x^2 + b3 x^3 + ...) e^(xt) = 1 + (b1 + t) x + (2 b2 + 2 b1 t + t^2) x^2/2! + (6 b3 + 6 b2 t + 3 b1 t^2 + t^3) x^3/3! + ... , with lowering operator L = d/dt, i.e., L P_n(..;t) = n * P_(n-1)(..;t), and raising operator R = t + d[log(1 + b1 D + b2 D^2 + ...)]/dD = t - Sum_{n>=1} F(n,b1,..,bn) D^(n-1), i.e., R P_n(..,;t) = P_(n+1)(..;t), where D = d/dt and F(n,b1,..,bn) are the Faber polynomials of A263916.
%F A094587 Also P_n(b1,..,bn;t) = CIP_n(t-F(1,b1),-F(2,b1,b2),..,-F(n,b1,..,bn)), the cycle index polynomials A036039.
%F A094587 (End)
%F A094587 The raising operator R = x + 1/(1-D) = x + 1 + D + D^2 + ... in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonals come from D^m x^n = n! / (n-m)! x^(n-m). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T is a matrix representation of R P(n-1,x) = P(n,x). - _Tom Copeland_, Aug 17 2016
%F A094587 The row polynomials have e.g.f. e^(xt)/(1-t) = exp(t*q.(x)), umbrally. With p_n(x) the row polynomials of A132013, q_n(x) = v_n(p.(u.(x))), umbrally, where u_n(x) = (-1)^n v_n(-x) = (-1)^n Lah_n(x), the Lah polynomials with e.g.f. exp[x*t/(t-1)]. This has the matrix form [T] = [q] = [v]*[p]*[u]. Conversely, p_n(x) = u_n (q.(v.(x))). - _Tom Copeland_, Nov 10 2016
%F A094587 From the Appell sequence formalism, 1/(1-b.D) t^n = P_n(b1,b2,..,bn;t), the generalized row polynomials noted in the Nov 18 2015 formulas, consistent with the 2007 comments. - _Tom Copeland_, Nov 22 2016
%F A094587 From _Peter Bala_, Feb 18 2017: (Start)
%F A094587 G.f.: Sum_{n >= 1} (n*x)^(n-1)/(1 + (n - t)*x)^n = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ....
%F A094587 n-th row polynomial R(n,t) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^k*(x + k - t)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^(n-k)*(x + k + t)^k, for arbitrary x. The particular case of the latter sum when x = 0 and t = 1 is identity 10.35 in Gould, Vol.4. (End)
%F A094587 Rodrigues-type formula for the row polynomials: R(n, x) = -exp(x)*Int(exp(-x)* x^n, x), for n >= 0. Recurrence: R(n, x) =  x^n + n*R(n-1, x), for  n >= 1, and R(0, x) = 1. d/dx(R(n, x)) = R(n, x) - x^n, for n >= 0 (compare with the formula from _Peter Bala_, Aug 28 2013). - _Wolfdieter Lang_, Dec 23 2019
%F A094587 T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * n^i for 0 <= k <= n. - _Werner Schulte_, Jul 26 2022
%e A094587 Rows begin {1}, {1,1}, {2,2,1}, {6,6,3,1}, ...
%e A094587 For n=3 and k=1, T(3,1)=6 since there are exactly 6 permutations of {1,2,3,4} with exactly 2 cycles and with 1 and 2 in separate cycles. The permutations are (1)(2 3 4), (1)(2 4 3), (1 3)(2 4), (1 4)(2 3), (1 3 4)(2), and (1 4 3)(2). - _Dennis P. Walsh_, Jan 24 2011
%e A094587 Triangle begins:
%e A094587      1,
%e A094587      1,    1,
%e A094587      2,    2,    1,
%e A094587      6,    6,    3,    1,
%e A094587     24,   24,   12,    4,    1,
%e A094587    120,  120,   60,   20,    5,    1,
%e A094587    720,  720,  360,  120,   30,    6,    1,
%e A094587   5040, 5040, 2520,  840,  210,   42,    7,    1
%e A094587 The production matrix is:
%e A094587       1,     1,
%e A094587       1,     1,     1,
%e A094587       2,     2,     1,    1,
%e A094587       6,     6,     3,    1,    1,
%e A094587      24,    24,    12,    4,    1,   1,
%e A094587     120,   120,    60,   20,    5,   1,   1,
%e A094587     720,   720,   360,  120,   30,   6,   1,   1,
%e A094587    5040,  5040,  2520,  840,  210,  42,   7,   1,   1,
%e A094587   40320, 40320, 20160, 6720, 1680, 336,  56,   8,   1,   1
%e A094587 which is the exponential Riordan array A094587, or [1/(1-x),x], with an extra superdiagonal of 1's.
%e A094587 Inverse begins:
%e A094587    1,
%e A094587   -1,  1,
%e A094587    0, -2,  1,
%e A094587    0,  0, -3,  1,
%e A094587    0,  0,  0, -4,  1,
%e A094587    0,  0,  0,  0, -5,  1,
%e A094587    0,  0,  0,  0,  0, -6,  1,
%e A094587    0,  0,  0,  0,  0,  0, -7,  1
%p A094587 T := proc(n, m): n!/m! end: seq(seq(T(n, m), m=0..n), n=0..9);  # _Johannes W. Meijer_, Oct 07 2009, revised Nov 25 2012
%p A094587 # Alternative: Note that if you leave out 'abs' you get A021009.
%p A094587 T := proc(n, k) option remember; if n = 0 and k = 0 then 1 elif k < 0 or k > n then 0 else abs((n + k)*T(n-1, k) - T(n-1, k-1)) fi end: #  _Peter Luschny_, Dec 30 2021
%t A094587 Flatten[Table[Table[n!/k!, {k,0,n}], {n,0,10}]] (* _Geoffrey Critzer_, Dec 11 2011 *)
%o A094587 (Haskell)
%o A094587 a094587 n k = a094587_tabl !! n !! k
%o A094587 a094587_row n = a094587_tabl !! n
%o A094587 a094587_tabl = map fst $ iterate f ([1], 1)
%o A094587    where f (row, i) = (map (* i) row ++ [1], i + 1)
%o A094587 -- _Reinhard Zumkeller_, Jul 04 2012
%o A094587 (Sage)
%o A094587 def A094587_row(n): return (factorial(n)*exp(x).taylor(x,0,n)).list()
%o A094587 for n in (0..7): print(A094587_row(n)) # _Peter Luschny_, Sep 28 2017
%Y A094587 Cf. A000166 (alt. row sums), A000522 (row sums).
%Y A094587 Cf. A068424, A036039, A173333, A213936, A263916.
%Y A094587 Cf. A000670, A008279, A021009, A048994, A132013, A132014, A132159, A132440, A133314, A218234, A235706, A238385.
%K A094587 easy,nonn,tabl
%O A094587 0,4
%A A094587 _Paul Barry_, May 13 2004
%E A094587 Edited by _Johannes W. Meijer_, Oct 07 2009
%E A094587 New description from _Dennis P. Walsh_, Jan 24 2011