cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094603 a(n) is the length of the maximal sequence of rightmost black cells in the n-th row of Rule 30 (begun from an initial black cell).

Original entry on oeis.org

1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 9, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 15, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 9, 1, 3, 1, 4, 1, 3, 1, 6, 1
Offset: 1

Views

Author

Eric Rowland, May 13 2004

Keywords

Comments

New numbers (A094604) in the sequence occur at positions 2^m.

Examples

			From _Michael De Vlieger_, Oct 06 2015: (Start)
First 12 rows, replacing "0" with ".", ignoring "0" outside of range of 1's, for better visibility of ON cells, the number of contiguous rightmost black cells in each row appears at left:
1                          1
3                        1 1 1
1                      1 1 . . 1
4                    1 1 . 1 1 1 1
1                  1 1 . . 1 . . . 1
3                1 1 . 1 1 1 1 . 1 1 1
1              1 1 . . 1 . . . . 1 . . 1
6            1 1 . 1 1 1 1 . . 1 1 1 1 1 1
1          1 1 . . 1 . . . 1 1 1 . . . . . 1
3        1 1 . 1 1 1 1 . 1 1 . . 1 . . . 1 1 1
1      1 1 . . 1 . . . . 1 . 1 1 1 1 . 1 1 . . 1
4    1 1 . 1 1 1 1 . . 1 1 . 1 . . . . 1 . 1 1 1 1
1  1 1 . . 1 . . . 1 1 1 . . 1 1 . . 1 1 . 1 . . . 1
(End)
		

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002.

Crossrefs

Programs

  • Mathematica
    rows = 105; ca = CellularAutomaton[30, {{1}, 0}, rows-1]; a[n_] := Length[ Last[ Split[ ca[[n, rows-n+1 ;; rows+n-1]]]]]; Table[ a[n], {n, 1, rows}] (* Jean-François Alcover, Oct 11 2012 *)
    Length /@ Map[Last, Split /@ CellularAutomaton[30, {{1}, 0}, 120] /. 0 -> Nothing /. {} -> Nothing] (* Michael De Vlieger, Oct 06 2015 *)

Formula

Conjecture: a(n) = A094604(A007814(n)). - Alan Michael Gómez Calderón, Feb 17 2023