A094604 Largest number (up to that point) of consecutive rightmost black cells in the rows of Rule 30 (begun from an initial black cell). a(n) = b(2^n), where b(m) is sequence A094603.
1, 3, 4, 6, 7, 9, 15, 16, 24, 25, 27, 29, 34, 36, 37, 39, 41, 43, 48, 49, 51, 54, 55, 58, 60, 63, 64, 66, 69, 70, 72, 74, 77, 79, 80, 82, 84, 86, 90, 91, 93, 100, 103, 104, 106, 108, 111
Offset: 0
Examples
From _Michael De Vlieger_, Oct 06 2015: (Start) First 12 rows, replacing "0" with ".", ignoring "0" outside of range of 1's, for better visibility of ON cells, the number of contiguous rightmost ON cells of each row appears at left: 1 1 3 1 1 1 1 1 1 . . 1 4 1 1 . 1 1 1 1 1 1 1 . . 1 . . . 1 3 1 1 . 1 1 1 1 . 1 1 1 1 1 1 . . 1 . . . . 1 . . 1 6 1 1 . 1 1 1 1 . . 1 1 1 1 1 1 1 1 1 . . 1 . . . 1 1 1 . . . . . 1 3 1 1 . 1 1 1 1 . 1 1 . . 1 . . . 1 1 1 1 1 1 . . 1 . . . . 1 . 1 1 1 1 . 1 1 . . 1 4 1 1 . 1 1 1 1 . . 1 1 . 1 . . . . 1 . 1 1 1 1 1 1 1 . . 1 . . . 1 1 1 . . 1 1 . . 1 1 . 1 . . . 1 Thus the sequence starts with {1, 3, 4, 6, ...} as these set new records for the number of contiguous rightmost ON cells in each row. (End)
References
- Wolfram, Stephen, A New Kind of Science, Wolfram Media, 2002.
Links
- Eric Rowland, Local nested structure in rule 30, Complex Systems 16 (2006) 239-258.
- Eric Weisstein's World of Mathematics, Rule 30
- Index entries for sequences related to cellular automata
Programs
-
Mathematica
t = Length /@ Map[Last, Split /@ CellularAutomaton[30, {{1}, 0}, 6000] /. 0 -> Nothing /. {} -> Nothing]; a = {0}; Do[If[t[[n]] > Max@ a, AppendTo[a, t[[n]]]], {n, Length@ t}]; Rest@ a (* Michael De Vlieger, Oct 06 2015 *)
Extensions
More terms from Eric Rowland, Jan 21 2006
a(42) from Eric Rowland, Jul 03 2015
a(43)-a(46) from Miles Wilson, Apr 13 2025
Comments