This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094613 #16 Feb 16 2025 08:32:53 %S A094613 145,328,445,505,520,680,689,777,780,793,840,876,897,901,905,924,1020, %T A094613 1045,1096,1105,1145,1160,1164,1221,1288,1292,1313,1320,1365,1480, %U A094613 1560,1640,1677,1736,1740,1745,1752,1820,1848,1885,1932,2005,2040,2056,2120,2145 %N A094613 Fundamental discriminants of real quadratic number fields with class number 4. %H A094613 G. C. Greubel, <a href="/A094613/b094613.txt">Table of n, a(n) for n = 1..1000</a> %H A094613 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a> %H A094613 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a> %t A094613 Select[Range[2145], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 4 &] (* _Arkadiusz Wesolowski_, Oct 22 2012 *) %o A094613 (PARI) {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==4}; %o A094613 for(n=1, 2500, if(ok(n)==1, print1(n, ", "))) \\ _G. C. Greubel_, Mar 01 2019 %o A094613 (Sage) %o A094613 is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 4; %o A094613 A094613 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n)); %o A094613 A094613(2500) # _G. C. Greubel_, Mar 01 2019 %Y A094613 Cf. A003656, A094619, A094612, A094614, A218156-A218160. %K A094613 nonn %O A094613 1,1 %A A094613 _Eric W. Weisstein_, May 14 2004