This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094634 #13 Aug 12 2025 01:44:12 %S A094634 1,3,4,5,4,5,5,2,6,7,5,6,6,7,7,6,7,7,7,6,7,7,7,8,8,7,8,8,8,7,8,8,8,9, %T A094634 9,8,9,9,8,9,9,9,10,9,8,9,9,9,10,9,10,10,9,2,10,10,9,10,10,10,11,10, %U A094634 11,9,10,10,10,11,10,11,11,10,11,11,10,11,11,11,11,10,11,11,11,11,12,11,10 %N A094634 a(n) = A094371(n) / A094372(n). %C A094634 When a(n)=2, A094404(n) is not 1. %t A094634 Kempner[1] := 1; Kempner[n_] := Max[Kempner @@@ FactorInteger[n]]; Kempner[p_, 1] := p; Kempner[p_, alpha_] := Kempner[p, alpha] = Module[{a, k, r, i, nu, k0 = alpha(p - 1)}, i = nu = Floor[Log[p, 1 + k0]]; a[1] = 1; a[n_] := (p^n - 1)/(p - 1); k[nu] = Quotient[alpha, a[nu]]; r[nu] = alpha - k[nu]a[nu]; While[r[i] > 0, k[i - 1] = Quotient[r[i], a[i - 1]]; r[i - 1] = r[i] - k[i - 1]a[i - 1]; i-- ]; k0 + Plus @@ k /@ Range[i, nu]]; L = M = {}; a = 2; Do[ s = Kempner[n]; If[s/n < a, a = s/n; AppendTo[M, a]; AppendTo[L, n]], {n, 1, 10^5}]; L/Denominator[M] (* revised by _Eric W. Weisstein_, May 17 2004, and by _N. J. A. Sloane_, Jul 03 2017 *) %Y A094634 Cf. A002034, A094371, A094372. %K A094634 nonn %O A094634 1,2 %A A094634 _Jonathan Sondow_ and _Robert G. Wilson v_, May 17 2004