This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094639 #36 Nov 30 2022 12:39:44 %S A094639 1,2,6,31,227,1991,19415,203456,2248356,25887400,307993016,3763786812, %T A094639 47032778956,598933188956,7751562502556,101741582076581, %U A094639 1351906409905481,18159677984049581,246298405721739581 %N A094639 Partial sums of squares of Catalan numbers (A000108). %C A094639 Koshy and Salmassi give an elementary proof that the only prime Catalan numbers are A000108(2) = 2 and A000108(3) = 5. Franklin T. Adams-Watters showed that the only semiprime Catalan number is A000108(4) = 14. The subsequence of primes in the partial sum of squares of Catalan numbers begins: 2, 31, 227, 101741582076581. [_Jonathan Vos Post_, May 27 2010] %C A094639 Conjecture: For any positive integer n, the polynomial P_n(x) = sum_{k = 0}^n(C_k)^2*x^k (with C_k = binomial(2k, k)/(k+1)) is irreducible over the field of rational numbers. [_Zhi-Wei Sun_, Mar 23 2013] %H A094639 Michael De Vlieger, <a href="/A094639/b094639.txt">Table of n, a(n) for n = 0..838</a> %H A094639 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Barry/barry321.html">Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices</a>, Journal of Integer Sequences, 19, 2016, #16.3.5. %H A094639 Joel E. Cohen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Cohen/cohen13.html">Variance Functions of Asymptotically Exponentially Increasing Integer Sequences Go Beyond Taylor's Law</a>, J. Int. Seq., Vol. 25 (2022), Article 22.9.3. %F A094639 a(n) = Sum_{k=0..n} ((2k)!/(k!)^2/(k+1))^2. - _Alexander Adamchuk_, Feb 16 2008 %F A094639 Sum_{i=1..n} [c(i)]^2 = Sum_{i=1..n} [C(2*i-2, i-1)/i]^2 = (1/(n-1)!)^2 * [ n^C(2*n-4, 1) + {2*C(n-1, 2)}*n^(2*n-5) + {C(n-2, 0) + 4*C(n-2, 1) + 13*C(n-2, 2) + 22*C(n-2, 3) + 12*C(n-2, 4)}*n^C(2*n-6, 1) + {12*C(n-3, 1) + 152*C(n-3, 2) + 458*C(n-3, 3) + 640*C(n-3, 4) + 440*C(n-3, 5) + 120*C(n-3, 6)}*n^(2*n-7) + {40*C(n-4, 0) + 313*C(n-4, 1) + 2332*C(n-4, 2) + 9536*C(n-4, 3) + 21409*C(n-4, 4) + 28068*C(n-4, 5) + 21700*C(n-4, 6) + 9240*C(n-4, 7) + 1680*C(n-4, 8) + ... + C(n-3, 0)*((n-1)!)^2 ]. %F A094639 Recurrence: (n+1)^2*a(n) = (17*n^2 - 14*n + 5)*a(n-1) - 4*(2*n - 1)^2*a(n-2). - _Vaclav Kotesovec_, Jul 01 2016 %F A094639 a(n) ~ 2^(4*n+4) /(15*Pi*n^3). - _Vaclav Kotesovec_, Jul 01 2016 %t A094639 Accumulate[CatalanNumber[Range[0,20]]^2] (* _Harvey P. Dale_, May 01 2011 *) %Y A094639 Cf. A000108, A094638, A014137, A001246, A033536, A000984, A006134, A082894, A002897, A079727. %K A094639 easy,nonn %O A094639 0,2 %A A094639 _André F. Labossière_, May 27 2004