This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094643 #21 May 27 2025 14:25:53 %S A094643 0,2,4,1,1,1,33,1,4,2,1,2,1,17,1,1,4,4,1,2,1,3,1,3,1,17,54,1,4,1,3,38, %T A094643 1,2,1,1,2,3,4,3,1,4,1,8,4,2,1,4,12,1,1,1,2,1,1,1,3,1,1,1,1,1,2,1,1, %U A094643 16,3,2,4,1,5,1,12,1,2,14,1,1,1,2,3,2,16,3,4,4,1,1,10,198,2,6,2,1,2,3,1,2 %N A094643 Continued fraction for log(Pi/2). %D A094643 G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7. %D A094643 J. Borwein and P. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11. %H A094643 D. Huylebrouck, <a href="https://web.archive.org/web/20240530051920/https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Huylebrouck222-231.pdf">Similarities in irrationality proofs for Pi, ln2, zeta(2) and zeta(3)</a>, Amer. Math. Monthly 108 (2001) 222-231. %H A094643 Jonathan Sondow, <a href="https://arxiv.org/abs/math/0401406">A faster product for pi and a new integral for ln(pi/2)</a>, arXiv:math/0401406 [math.NT], 2004; Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670. %t A094643 ContinuedFraction[ Log[Pi/2], 100] %Y A094643 Cf. A094642 (decimal expansion). %K A094643 cofr,easy,nonn %O A094643 0,2 %A A094643 _Jonathan Sondow_ and _Robert G. Wilson v_, May 18 2004 %E A094643 Offset changed by _Andrew Howroyd_, Aug 07 2024