cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094682 Discriminants of integer positive ternary quadratic forms that are spinor regular but not regular.

This page as a plain text file.
%I A094682 #9 Aug 15 2015 13:02:14
%S A094682 64,108,108,128,256,256,324,343,432,432,432,1024,1024,1024,1372,1728,
%T A094682 2048,3888,4096,4096,4096,5488,6912,6912,16384,16384,27648,62208,87808
%N A094682 Discriminants of integer positive ternary quadratic forms that are spinor regular but not regular.
%C A094682 List is believed to be complete.
%D A094682 G. L. Watson: Integral Quadratic Forms (Cambridge, 1960).
%H A094682 W. K. Chan and A. G. Earnest, <a href="http://dx.doi.org/10.1112/S002461070400523X">Discriminant bounds for spinor regular ternary quadratic lattices</a>, J. London Math. Soc. (2) 69 (2004), no. 3, 545-561.
%H A094682 W. C. Jagy, I. Kaplansky and A. Schiemann, <a href="http://dx.doi.org/10.1112/S002557930001264X">There are 913 regular ternary forms</a>, Mathematika 44(1997) 332-341.
%H A094682 A. Schiemann, <a href="http://dx.doi.org/10.1007/s002080050086">Ternary positive definite quadratic forms are determined by their theta series</a>, Math. Ann. 308(1997) 507-517.
%K A094682 nonn,fini,full
%O A094682 1,1
%A A094682 _Will Jagy_, Jun 03 2004