cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094685 Modified juggler sequence: if n mod 2 = 0 then round(sqrt(n)) else round(n^(3/2)).

Original entry on oeis.org

0, 1, 1, 5, 2, 11, 2, 19, 3, 27, 3, 36, 3, 47, 4, 58, 4, 70, 4, 83, 4, 96, 5, 110, 5, 125, 5, 140, 5, 156, 5, 173, 6, 190, 6, 207, 6, 225, 6, 244, 6, 263, 6, 282, 7, 302, 7, 322, 7, 343, 7, 364, 7, 386, 7, 408, 7, 430, 8, 453, 8, 476, 8, 500, 8, 524, 8, 548, 8, 573, 8, 598, 8, 624, 9, 650
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2004

Keywords

References

  • C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 233.

Crossrefs

Programs

  • Maple
    f:=proc(n) if n mod 2 = 0 then RETURN(round(sqrt(n))) else RETURN(round(n^(3/2))); fi; end;
  • Mathematica
    A094685[n_]:=If[Mod[n,2]==0,Round[Sqrt[n]],Round[n^(3/2)]];Array[A094685,76,0] (* James C. McMahon, Apr 15 2025 *)
  • Python
    from gmpy2 import isqrt_rem
    def A094685(n):
        i, j = isqrt_rem(n**3 if n % 2 else n)
        return int(i+ int(4*(j-i) >= 1)) # Chai Wah Wu, Aug 17 2016