This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094701 #19 Apr 09 2020 21:48:42 %S A094701 1,2,2,2,2,1,2,2,3,3,2,3,2,4,5,2,2,3,2,4,7,4,2,2,5,4,3,1,2,5,2,2,9,4, %T A094701 18,3,2,4,9,4,2,7,2,6,3,4,2,3,7,5,9,5,2,3,7,3,9,4,2,5,2,4,7,2,11,7,2, %U A094701 9,9,10,2,3,2,4,12,4,10,7,2,5,3,4,2,3,13,4,9,4,2,5,9,9,9,4,19,3,2,7,5,5,2,7 %N A094701 Smallest linear combination of phi(n) and sigma(n) with nonnegative coefficients: a(n) = Min_{x>=0,y>=0} (x+y) for which x*phi(n) + y*sigma(n) is a multiple of n. %C A094701 a(n) is a generalization of the multiperfect numbers in A007691. %H A094701 Antti Karttunen, <a href="/A094701/b094701.txt">Table of n, a(n) for n = 1..12857</a> %H A094701 Antti Karttunen, <a href="/A094701/a094701.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %F A094701 a(multiperfect) = 1. %F A094701 a(prime) = 2 as 1*phi(prime) + 1*sigma(prime) and 1+1 = 2. %F A094701 For primes > 5, a(2*prime) = 4. %e A094701 a(6) = 1 as 1*sigma(6) is a multiple of 6. %e A094701 a(4) = 2 as 2*phi(4) + 0*sigma(4) = 4. - Example added by _Antti Karttunen_, Feb 24 2020 %e A094701 a(14) = 4 as 3*phi(14) + 1*sigma(14) = 3*6 + 24 = 3*14, where 3+1 = 4. %o A094701 (PARI) A094701(n) = { my(x=eulerphi(n),y=sigma(n)); for(s=1,oo,for(t=0,s,if(!(((t*x)+((s-t)*y))%n),return(s)))); }; \\ _Antti Karttunen_, Feb 24 2020 %Y A094701 Cf. A000010, A000203, A000396, A005820, A007691 (positions of ones), A027687, A046060, A046061. %K A094701 nonn %O A094701 1,2 %A A094701 _Walter Nissen_, May 20 2004 %E A094701 Name clarified by _Antti Karttunen_, Feb 24 2020