This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A094704 #20 Feb 10 2023 12:02:47 %S A094704 0,1,11,112,1123,11235,112358,1123593,11235951,112359544,1123595495, %T A094704 11235955039,112359550534,1123595505573,11235955056107, %U A094704 112359550561680,1123595505617787,11235955056179467,112359550561797254 %N A094704 Convolution of Fibonacci(n) and 10^n. %C A094704 The convolution of Fibonacci(n) and k^n for k > 1 has a(n) = (1/k^2 - k -1))*(2*k^(n+1) - k*Lucas(n) - (k+2)*Fibonacci(n)). %H A094704 G. C. Greubel, <a href="/A094704/b094704.txt">Table of n, a(n) for n = 0..990</a> %H A094704 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-9,-10). %F A094704 G.f. : x/((1-10*x)*(1-x-x^2)). %F A094704 a(n) = (1/89)*( 10^(n+1) - 5*( ((1 + sqrt(5))/2)^n + ((1 - sqrt(5))/2)^n ) - (6/sqrt(5))*( ((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n ) ). %F A094704 a(n) = 10*a(n-1) + Fibonacci(n) for n >= 1. - _Mark Dols_, Aug 31 2009 %F A094704 a(n) = 11*a(n-1) - 9*a(n-2) - 10*a(n-3), n > 2. - _Harvey P. Dale_, Mar 18 2013 %F A094704 a(n) = (1/89)*( 10^(n+1) - Fibonacci(n+3) - 8*Fibonacci(n+1) ). - _G. C. Greubel_, Feb 09 2023 %t A094704 CoefficientList[Series[x/((1-x-x^2)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[ {11,-9,-10},{0,1,11},20] (* _Harvey P. Dale_, Mar 18 2013 *) %o A094704 (Magma) [(10^(n+1) -Fibonacci(n+3) -8*Fibonacci(n+1))/89: n in [0..30]]; // _G. C. Greubel_, Feb 09 2023 %o A094704 (SageMath) %o A094704 def A094704(n): return (10^(n+1) -fibonacci(n+3) -8*fibonacci(n+1))/89 %o A094704 [A094704(n) for n in range(31)] # _G. C. Greubel_, Feb 09 2023 %Y A094704 Cf. A000032, A000045, A019523. %K A094704 easy,nonn %O A094704 0,3 %A A094704 _Paul Barry_, May 21 2004