cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094718 Array T read by antidiagonals: T(n,k) is the number of involutions avoiding 132 and 12...k.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 4, 1, 0, 1, 2, 3, 5, 4, 1, 0, 1, 2, 3, 6, 8, 8, 1, 0, 1, 2, 3, 6, 9, 13, 8, 1, 0, 1, 2, 3, 6, 10, 18, 21, 16, 1, 0, 1, 2, 3, 6, 10, 19, 27, 34, 16, 1, 0, 1, 2, 3, 6, 10, 20, 33, 54, 55, 32, 1, 0, 1, 2, 3, 6, 10, 20, 34, 61, 81, 89, 32, 1
Offset: 1

Views

Author

Ralf Stephan, May 23 2004

Keywords

Comments

Also, number of paths along a corridor with width k, starting from one side (from H. Bottomley's comment in A061551).
Rows converge to binomial(n,floor(n/2)) (A001405).
Note that the rows and columns start at 1, which for example obscures the fact that the first row refers to A000007 and not to A000004. A better choice is the indexing 0 <= k and 0 <= n. The Maple program below uses this indexing and builds only on the roots of -1. - Peter Luschny, Sep 17 2020

Examples

			Array begins
  0   0   0   0   0   0   0   0   0   0 ...
  1   1   1   1   1   1   1   1   1   1 ...
  1   2   2   4   4   8   8  16  16  32 ...
  1   2   3   5   8  13  21  34  55  89 ...
  1   2   3   6   9  18  27  54  81 162 ...
  1   2   3   6  10  19  33  61 108 197 ...
  1   2   3   6  10  20  34  68 116 232 ...
  1   2   3   6  10  20  35  69 124 241 ...
  1   2   3   6  10  20  35  70 125 250 ...
  1   2   3   6  10  20  35  70 126 251 ...
  ...
		

Crossrefs

Main diagonal is A014495, antidiagonal sums are in A094719.
Cf. A080934 (permutations).

Programs

  • Maple
    X := (j, n) -> (-1)^(j/(n+1)) - (-1)^((n-j+1)/(n+1)):
    R := n -> select(k -> type(k, odd), [$(1..n)]):
    T := (n, k) -> add((2 + X(j,n))*X(j,n)^k, j in R(n))/(n+1):
    seq(lprint([n], seq(simplify(T(n, k)), k=0..10)), n=0..9); # Peter Luschny, Sep 17 2020
  • Mathematica
    U = ChebyshevU;
    m = maxExponent = 14;
    row[1] = Array[0&, m];
    row[k_] := 1/(x U[k, 1/(2x)])*Sum[U[j, 1/(2x)], {j, 0, k-1}] + O[x]^m // CoefficientList[#, x]& // Rest;
    T = Table[row[n], {n, 1, m}];
    Table[T[[n-k+1, k]], {n, 1, m-1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2018 *)

Formula

G.f. for k-th row: 1/(x*U(k, 1/(2*x))) * Sum_{j=0..k-1} U(j, 1/(2*x)), with U(k, x) the Chebyshev polynomials of second kind. [Clarified by Jean-François Alcover, Nov 17 2018]
T(n, k) = (1/(n+1))*Sum_{j=1..n, j odd} (2 + [j, n]) * [j, n]^k where [j, n] := (-1)^(j/(n+1)) - (-1)^((n-j+1)/(n+1)). - Peter Luschny, Sep 17 2020